Complete Genotype with Project Merge Tool

January 2010

David Hulce, Rensheng Qi, Teresa Snyder-Leiby, Jonathan CS Liu

Introduction

Obtaining a complete genetic profile for wildlife and plant research or medical research is often complicated by overlapping marker ranges and/or incompatible chemistry; making it necessary to amplify the same samples multiple times using different sets of markers or locus specific primers. Traditionally, researchers export the genotyping results from several multiplexes into a spread sheet and manually combine allele calls for each individual.

GeneMarker 1.90 addresses this problem with a new tool: Merge Projects. Researchers can conveniently combine two or more GeneMarker projects (each project using a panel containing a unique set of markers or loci) into a single, comprehensive report. This report represents a single view of multiplexes (a super panel) of markers/loci from the individual projects, providing a complete genotype for each sample. This merged report may be saved in a spread sheet as a genome-wide genotype, or imported into other special applications, such as, Clustering Analysis or Relationship Testing and Kinship Analysis, improving the robustness of these analyses by including information from a greater number of markers.

Procedure – Merge Projects

- 1. Import data files (fsa, abi, ab1, scf) or open a saved GeneMarker Project file
- 2. Select the Run icon to launch the Run Wizard using a panel with uniquely named markers
- 3. Repeat with data files amplified with a second multiplex of uniquely named markers
- 4. Save each project for a set of individual files
- 5. Select Tools \rightarrow Merge Project \rightarrow Open Merge Project \rightarrow Add project files \rightarrow OK
- 6. Select File Name Group icon \rightarrow Match Files by group identifier or character position \rightarrow Match \rightarrow OK
- 7. Click Report Settings Icon to activate the Allele Report Settings dialog
- 8. Save the merged project report as a .txt file.

	MAF6	MAF65 MAF64			BHC1222			222	BN848			OARCP0026				Rt9			BM1225			HAF209				0		OarAE16		1		387 FCB26		266 TGLA1222					
1	BHS-054 PAC	128	116	1 120		112	1 2	91	285	23	4 4	232		136	7 1	.30 /	134		132	25	2 🚺	246	114		110	277	26	3 🖊	98		80	7 1	37 📕	131		89	101	1 34	131
2	SPBBHS-001 📶	118	116	116		116	1 2	91	287	23	6	236		138	7 1	36	132		128	**		**	1 10		106	263	26	3 🔏	94		80	1	1 🖉	135		91	89	1 33	1 133
З	SPBBHS-002	118	116	116		116	1 2	87	285	24	4 4	236		144	a 1	44 4	136		132	25	2 🖌	248	1 06		106	268	26	в 🙍	94		82	1	41 📕	131		95	101	1 34	1 34
4	SPBBHS-003	118	118	118		118	1 2	91	285	24	4 4	236		146	a 1	46	128		128	24	6 🚺	242	1 18		106	263	26	2 🖊	86		82	1	41 📕	133		95	91	1 34	1 33
5	SPBBHS-004 Disa	abled:																																					
6	SPBBHS-005	126	118	122		116	1 2	87	285	23	6	236		138	a 1	38	128		122	25	2 🖌	246	114		110	271	27	1 🖊	86		80	1	41 📕	135		97	89	1 34	134
7	SPBBHS-006	116	116	122		120	1 2	91	285	24	4 4	236		146	a 1	26	134		128	26	0 🖌	260	118		106	271	26	2 🖊	86		82	1	37 📕	131		95	101	1 35	1 133
В	SPBBHS-007	118	116	122	_	110	. 7	85	285	23	2	228		146	a 1	46	128		128	2 6	0 🖌	248	118		118	2 62	2 63	2 🖊	82	-	82	1	41 📕	137		95	95	134	1 33
Ð	SPBBHS-008	118	116	122	_	118	_	85	285	24	4 1	236		126	a 1	26	134		128	2 6	0 🥻	248	118		118	263	26:	2 🙍	86	-	82	1	41 📕	137	<u> </u>	95	95	135	133
10	SPBBHS-009	118	116	118	_	110	. 2	85	285	23	6	232		148	- 1	44 /	128		128	24	8 🖌	248	114		106	271	26	2	**		* ,	a _1	37 🗖	131		95 .	101	133	133
11	SPBBHS-010	116	116	122	_	118	. 2	87	285	24	4 1	234		146	- 1	36	136		132	2 5	2	250	118		114	277	27	5 🙇	98	-	80	Alle	e Report	Settings		66 J	 111 		X 133
12	SPBBHS-011	116	116	120		110	_	91	285	23	6	228		146	- 1	26	128		128	24	8 🖌	246	118		106	268	2 6	3 🙇	86	-	82	4							133
13	SPBBHS-012	124	116	122	_	116	_ 2	91	285	23	6	234		148	a 1	38 /	136		128	2 5 2 5	2 🖌	252	106		106	277	27	7 🗖	80	-	80	4 [Heport Sty	ė		7 6	ptions		134
14	SPBBHS-013	116	116	122	_	118	- 2	91	291	24	4 1	244		146	- 1	46 🛔	128		128	24	8 [246	118	_	118	275	25	8 🙇	82	-	80	4	C Allele L	fai			🔽 Extend D	ploid Homozyg	ous 134
15	SPBBHS-014	126	124	122	_	122	_ 2	91	287	23	8	232		144	- 1	44 🛔	132		132	2 5 2 5	2	246	120		106	2 63	26	3 🙇	92	-	80	4	Marker	Table (Fr	agment)		☑ Show Ale	le Name	131
16	SPBBHS-015	128	128	118	_	118	_ 2	87	287	2 3	4 1	232		136	a 1	.30	138		120	24	4 🖌	244	114		114	263	2 6	3 🙇	92	-	86	4	C Pie Tel		ALL DAY				127
17	SPBBHS-016	126	118	122	_	112	_ 2	91	285	23	6	236		144	- 1	38	128		128	2 5 2 5	2	248	114		114	263	25	в 🗖	82	-	80	4	C Dirita	ne fer rea	тыстяј		Show Siz		133
18	SPBBHS-017	118	118	122	_	122	_ 2	91	285	24	4 1	236	<u> </u>	126	a 1	26	128		128	2 6 26	0 🥻	242	106		106	275	2 63	2 🙇	98	-	86	4	C Peak 1	able			Show He	ght	135
19	SPBBHS-018	118	116	= 120	_	116	a 2	87	285	24	4 1	240		146	- 1	.46 🛔	138		128	2 6	0 🥻	242	118	_	118	2 68	25	в 🗖	86	<u> </u>	86	4	C Allele C	ount			E Show Are		133
20	SPBBHS-019	118	118	1 122	_	118	a 2	91	285	23	6	228		138	- 1	26	132		128	26	0 🖌	260	118		106	263	25	в 🙇	82	<u> </u>	82	4				1. 01007740		127	
21	SPBBHS-020	124	118	118	_	110	a 2	85	285	24	4 1	244		126	- 1	26	128		128	26	0 🖌	248	118		106	262	26	2 🙇	86	_	82	4 –							133
22	SPBBHS-021	118	118	118	_	116	_ 2	87	285	23	6	228		146	a 1	26	128		122	2 6	0 🖌	246	106		106	277	25	8 🙇	86	<u> </u>	82	4	C Sample	Name (•	File Name	•			133
23	SPBBHS-022	118	116	1 20	_	118	— 2	91	285	24	4 1	238		146	- 1	.46 /	138		134	26	0 🖌	260	118		118	262	25	з 🙇	86	<u> </u>	80	4					Show at 1	when no allele o	cal 134
24	SPBBHS-023	118	118	1 20	_	110	a 2	91	287	24	4 1	234		144	a 1	.26	128	-	128	24	8 4	248	120	_	118	262	25	3 📶	80	<u> </u>	80	4 r	Orientation			ΤĒ	Show Only U	ncertain Alleles	133
25	SPBBHS-024	**	**	122	_	118		*	**	24	4 1	228		146	a 1	46	132	-	128	25	2 4	248	120	_	118	276	26	8 /	86	<u> </u>	80	9	Horiz	ontal C	Vertical		Show Reject	d Low Score 4	133
26	SPBBHS-025	126	124	1 122	_	122	_ 2	91	287	24	4 1	236		146	_ 1	26	128		128	25	0 🖌	248	118		106	258	25	з 📶	98		98	4					Unit File of	SULUH SCORP	133
27	SPBBHS-026	126	118	1 122	_	122	2 2	91	285	23	6 /	236		144	a 1	.38 /	128		128	24	8 4	246	118	_	106	271	25	3 /	98	-	80	9				V	mille c xila 54	mpre rvames	133
28	SPBBHS-027	126	118	116	_	110	2 2	91	285	23	6 /	234		146	a 1	.38 /	132	-	128	25	2 🖌	250	114	_	106	277	26	3 🖊	98	-	80 1	9 6	1		0k	1	Cancel	1	133
29	SPBBHS-028	124	116	116	_	116	2	91	291	23	6	236		144	1	38	132		128	26	0	260	106	-	106	263	26	3 4	94		94 1	9			20		201001	1	134
30	SPBBHS-029	126	124	116		116	2 2	91	291	24	4 /	234		138	_ 1	38 /	132		128	26	υ 🖌	250	1 10		106	263	26	2 🛛	80		80 1				-	-		-	135

Figure 1: Three different multiplexes were used to amplify 30 DNA samples. Each multiplex contained primers for 4 or 5 independently assorting loci. The merge project tool in GeneMarker provided a single genotype for each individual with 14 markers. Allele drop out is indicated by **. The report style pictured here is a Marker Table suitable for further analysis in Relationship Testing or Kinship Analysis. Saving as a Peak Table would provide a spread sheet with marker and allele name, fragment size (MW), peak height, height ratio, peak area, area ratio. The Bin Table format would be selected for further analysis using clustering algorithms for phylogeny.

Results and Discussion

Figure 1 illustrates a three-fold increase in the number of loci in one report made possible by merging projects. The .txt tab delimited format of the saved report provides the ability to save any number of loci and samples into one merged report.

SoftGenetics LLC 100 Oakwood Ave. Suite 350 State College, PA 16803 USA Phone: 814/237/9340 Fax 814/237/9343 www.softgenetics.com email: info@softgenetics.com

Figure 2. Expanded discriminatory power is possible by including 9 loci from two projects (upper dendrogram) in contrast to the lower dendrogram that is based on the 4 loci of one multiplex.

Overlapping marker ranges or incompatible chemistries are common challenges in microsatellite analysis. GeneMarker's Merge Project tool enables researchers to combine genotype information on the same samples analyzed with different multiplexes. The result is a master report that provides genotype information from multiple kits or multiplexes with the flexibility to be saved in a variety of formats: Marker Table, Peak Table or Bin Report.

Examples of clinical research applications with Merge Project include pathogen and genetic disorder research. Often several PCR kits are used to screen individuals for a variety of pathogens that cause similar symptoms, such as influenza strains or drug resistant tuberculosis strains. Results from these multiple kits are presented in one report table, providing more complete information for each patient in a single report. Multiple kits are also required for complete genetic profiles for genetic disorders, such as breast cancer or Duchenne muscular dystrophy (DMD). Merged projects provides complete genotypes, allowing combination of kit results for one disorder, or combining results from kits for different disorders on one report for each individual.

Ecology and agriculture applications include compilation of a genome-wide report for each individual in one table. The table can be saved as a spread sheet for import into other statistics packages, or used with GeneMarker applications; providing greater discriminatory power for kinship analysis and relationship testing, and expanded rigor for clustering algorithms used in phylogeny, lineage and evolution studies.

GeneMarker has been designed to provide genetic researchers with a biologist friendly genotyping tool; with unique pattern recognition and sizing technology providing >99% accuracy, easy linked navigation, management control and tracking, exportable LIMS reports, bulk printing capabilities, instrument compatibility with ABI®, MegaBACETM and Beckman CoulterTM. Unique post-genotyping applications in GeneMarker of interest to ecology and population genetics research include: cluster analysis and phylogeny, relationship testing and kinship analysis, microsatellite instability, and TILLING®.

Acknowledgements

We would like to thank Dr. Joshua Armstrong, Director of Research, Mendel Biotechnology, Inc., Hayward, CA and Dr. Richard Jobin, Forensic Unit Manager, Special Investigations and Forensic Services Section, Fish and Wildlife Division, Sustainable Resource Development, Alberta, Canada for data and collaboration on this application

References

- 1. M.M. van Dyk, G. Koning, Z. Simayi, S. Booi, R. Maharaj, M.C. Selala and D.J.G. Rees. Development of microsatellite markers for marker-assisted breeding in pears (Pyrus spp.) Acta Horticulturae 2004, 671:307-313.
- 2. Kyle, C.J., T.J.Karels, B. Clark, C.Strobeck, D.Sl Hik and C.S. Davis (2004) Isolation and characterization of microsatellite markers in hoary marmots (Marmota caligata) Molec. Ecol. Notes 4, 749-751
- Wei Gong, Chuan Chen, Christoph Dobeš, Cheng-Xin Fu, Marcus A. Koch. Molecular Phylogenetics and Evolution. 2008. 48 (1094-1105). Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion.
- 4. Kadouri L, Hubert A, Rotenberg Y, et al. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations. Journal of Medical Genetics 2007; 44(7):467–471.

*Trademarks are the property of their respective owners.

