

Copyright, Licenses and Trademarks

© 2001-2019 SoftGenetics LLC. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, or translated into any language in any form by any means without the written permission of SoftGenetics LLC. Th e software is copyrighted and cannot be altered or given to a third party without the written authorization from Soft Genetics LLC. The software may be licensed from SoftGenetics, LLC. Mutation Explorer, Mutation Surveyor, JelMarker, ChimerMarker, NextGENe, GeneMarker and MaSTR are trademarks of SoftGenetics LLC. All other product names and/or logos are trademarks of their respective owners.

Limited Liability of Using the Software

In no event shall SoftGenetics LLC. be liable for direct, indirect, incidental, special, exemplary, or consequential dam ages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profit s; or business interruption), however caused and any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of use of this software, even if advised of the possibility of such damage.

SoftGenetics End User License Agreement GeneMarker ${ }^{\circledR}$ HID \& GeneMarker ${ }^{\circledR}$ HID auto \& GeneMarker ${ }^{\circledR}$ HID auto lite

NOTICE TO USER: PLEASE READ THIS CONTRACT CAREFULLY. BY DOWNLOADING, INSTALLING, OR USING ALL OR ANY PORTION OF THE SOFTWARE YOU ACCEPT ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT.

Abstract

CLICKING ON THE "ACCEPT," OR "I AGREE," BUTTON IS THE SAME AS SIGNING THIS AGREEMENT. IF YOU ARE INSTALLING THIS SOFTWARE FOR ANOTHER USER, YOU ACKNOWLEDGE THAT THE ULTIMATE END USER HAS READ AND AGREED TO THE TERMS OF THIS AGREEMENT. IF YOU ARE INSTALLING THIS SOFTWARE FOR AN ORGANIZATION, YOU ACKNOWLEDGE AND AGREE THAT YOU ARE AUTHORIZED TO BIND THE ORGANIZATION TO THE TERMS OF THIS AGREEMENT. IF AN ORGANIZATION USES THIS SOFTWARE, THE ORGANIZATION AGREES TO ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT.

IF YOU DO NOT AGREE TO ANY OF THE TERMS CONTAINED IN THIS AGREEMENT, DO NOT DOWNLOAD, INSTALL, OR USE THIS SOFTWARE.

1. Definitions. "Software" means (a) all of the contents of the files (delivered electronically or on physical media), disk(s), CD-ROM(s) or other media with which this Agreement is provided, including but not limited to (i) SoftGenetics' or third party computer information, data, or software; (ii) related explanatory written materials or files ("Documentation"); and (iii) fonts and other output mechanisms; and (b) upgrades, modified versions, updates, additions, and future copies of the Software, if any, licensed to you by SoftGenetics (collectively, "Updates").
2. "Use" or "Using" means to access, install, download, copy or otherwise benefit from using the functionality of the Software.
3. "Permitted Number" means one (1) unless otherwise indicated under a valid license (e.g. volume license) granted by SoftGenetics.
4. "Computer" means a virtual machine or a physical electronic device that accepts information in digital or similar form and manipulates it for a specific result based on a sequence of instructions.
5. "SoftGenetics" means SoftGenetics, LLC State College, PA 16803
6. Software License. As long as you comply with the terms of this End User License Agreement (the "Agreement") and pay all license fees for the Software, SoftGenetics grants to you a non-exclusive license to Use the Software for the purposes described in the Documentation. Some third party materials included in the Software may be subject to other terms and conditions, which are typically found in a "Read Me" file located near such materials.
6.1. General Use. You may install and Use a copy of the Software on your compatible computer. You may also use the Software on a computer file server provided concurrent use does not exceed the Permitted Number. No other network use is permitted, including but not limited to, using the Software either directly or through commands, data or instructions from or to a computer not part of your internal network, for internet or web hosting services or by any user not licensed to use a copy of the Software through a valid license from SoftGenetics.
6.2. Distribution. This license does not give you the right to distribute or sublicense the Software to others. A separate agreement with SoftGenetics is required for any distribution or sublicensing of the Software.
6.3. Backup Copy. You may make one backup copy of the Software, provided your backup copy is not installed or used on any Computer other than for archival purposes. You may not transfer the rights to a backup copy unless you transfer all rights in the Software to subsequent authorized user.
6.4. Home Use. You, as the primary user of the computer on which the Software is installed, may also install the Software on one of your home computers. However, the Software may not be used on your home computer at the same time the Software is being used on any other computer. 6.5. Research Use Only. User acknowledges and agrees that the Software is licensed by SoftGenetics for research use only. Any violation of this restriction on use shall constitute a breach of this Agreement. User assumes all risk for use of the Software. User further acknowledges that User is responsible for validating the Software for use in User's intended applications. Due to the nature of computers, software, operating systems and installation procedures, SoftGenetics cannot accept any liability or responsibility for validation of the Software in any of User's applications. 7. Intellectual Property Rights. The Software and any copies that you are authorized by SoftGenetics to make are the intellectual property of and are owned by SoftGenetics and its suppliers. The structure, organization and code of the Software are the valuable trade secrets and confidential information of SoftGenetics and its suppliers. The Software is protected by copyright, including without limitation by United States Copyright Law, international treaty provisions and applicable laws in the country in which it is being used. You may not copy the Software, except as set forth in this Agreement ("Software License"). Any copies that you are permitted to make pursuant to this Agreement must contain the same copyright and other proprietary notices that appear on or in the Software. You also agree not to (a) modify, adapt, translate, or create derivative works based on the Software, or (b) reverse engineer, decompile, disassemble or otherwise attempt to discover the source code of the Software except to the extent that (i) you may be expressly permitted to decompile under applicable law, (ii) it is essential to do so in order to achieve operability of the Software with another software program, and (iii) you have first requested SoftGenetics to provide the information necessary to achieve such operability and SoftGenetics has not made such information available. SoftGenetics may impose reasonable conditions and request a reasonable fee before providing such information. Any information supplied by SoftGenetics or obtained by you, as permitted hereunder, may only be used by you for the purpose described herein and may not be disclosed to any third party or used to create any software which is substantially similar to or performs the same function(s) as the Software. Requests for information should be directed to SoftGenetics.
7. Trademarks shall be used in accordance with accepted trademark practice, including identification of trademarks owners' names. Trademarks can only be used to identify printed output produced by the Software and such use of any trademark does not give you any rights of ownership in that trademark. SoftGenetics and other owners of any trademarks contained in the Software reserve all rights to limit and/or condition use of any of their trademarks.
8. Except as expressly stated above, this Agreement does not grant you any intellectual property rights in the Software.

Indemnity. You agree to hold harmless, indemnify and defend SoftGenetics, its officers, directors, employees, agents, and affiliates from and against any claims, demands, losses, damages, fines and expenses (including attorney's fees and costs) arising out of your use of the Software, any instrument on which the Software is operating, and related Documentation. Without limiting the foregoing, you also agree to hold harmless, indemnify and defend SoftGenetics, its officers, directors, employees, agents, and affiliates from and against any matters relating to any claims that you have (i) viewed, downloaded, encoded, compressed, copied or transmitted any materials (other than materials provided by SoftGenetics) in connection with use of the Software or any instrument on which the Software is operating in violation of another party's rights or in violation of any
law.
10. Transfer. You may not rent, lease, sublicense or transfer your rights in the Software, or authorize all or any portion of the Software to be copied onto another user's Computer except as may be expressly permitted herein. You may, however, transfer all your rights to Use the Software to another person or legal entity provided that: (a) you also transfer this Agreement, any instrument on which the Software operates, the Software and all other software or hardware bundled or pre-installed with the Software, including all copies, Updates and prior versions, and all copies of font or other output software converted into other formats, to such person or entity; (b) you retain no copies, including backups and copies stored on a Computer; and (c) the receiving party accepts the terms and conditions of this Agreement and any other terms and conditions upon which you legally purchased a valid license to the Software. Notwithstanding the foregoing, you may not transfer education, pre-release, or not-for-resale copies of the Software.
11. Multiple Environment Software / Multiple Language Software / Dual Media Software / Multiple Copies/ Bundles / Updates. If the Software supports multiple platforms or languages, if you receive the Software on multiple media, if you otherwise receive multiple copies of the Software, or if you received the Software bundled with other software or with an instrument, the total number of your Computers on which all versions of the Software are installed may not exceed the Permitted Number. You may not rent, lease, sublicense, lend or transfer any versions or copies of such Software you do not Use. If the Software is an Update to a previous version of the Software, you must possess a valid license to such previous version in order to Use the Update. You may continue to use the previous version of the Software on your Computer after you receive the Update to assist you in the transition to the Update, provided that: the Update and the previous version are installed on the same Computer; the previous version or copies thereof are not transferred to another party or Computer unless all copies of the Update are also transferred to such party or Computer; and you acknowledge that any obligation SoftGenetics may have to support the previous version of the Software may be ended upon availability of the Update.
12. If the Software is used to connect with or download information from any other software program, system, or database, you agree that SoftGenetics does not control the features, operations, or information practices of any third party websites, computer systems, or databases.
13. LIMITED WARRANTY. SoftGenetics warrants to the person or entity that purchases a license for the Software for use pursuant to the terms of this license that the Software will perform substantially in accordance with the Documentation for a period of thirty (30) days following receipt of the Software when used on the recommended hardware configuration. Any non-substantial variation of performance from the Documentation does not establish a warranty right. THIS LIMITED WARRANTY DOES NOT APPLY TO UPDATES, SOFTWARE CONVERTED INTO OTHER FORMATS, PRE-RELEASE (BETA), TRYOUT, PRODUCT SAMPLER, OR NOT-FOR-RESALE (NFR) COPIES OF THE SOFTWARE. To make a warranty claim, you must return the Software to the location where you obtained it along with proof of purchase within such ninety (90) day period. If the Software does not perform substantially in accordance with the Documentation, the entire liability of SoftGenetics and your exclusive remedy shall be limited to either, at SoftGenetics option: (1) the replacement of the Software, or (2) the refund of the license fee you paid for the Software. THE LIMITED WARRANTY SET FORTH IN THIS SECTION GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE ADDITIONAL RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION.
14. DISCLAIMER. THE FOREGOING LIMITED WARRANTY STATES THE SOLE AND EXCLUSIVE REMEDIES FOR SOFTGENETICS'S OR ITS SUPPLIER'S BREACH OF WARRANTY. SOFTGENETICS AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFORMANCE, MERCHANTABILITY OR RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, YOU ACKNOWLEDGE AND AGREE THAT SOFTGENETICS HAS MADE NO OTHER EXPRESS WARRANTIES TO YOU REGARDING THE SOFTWARE AND THAT THE SOFTWARE IS BEING PROVIDED TO YOU "AS IS' WITHOUT WARRANY OF ANY OTHER KIND. SOFTGENETICS SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES WITH REGARD TO THE SOFTWARE, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, MERCHANTABLE QUALITY, NONINFRINGEMENT OF THIRD PARTY RIGHTS, INTEGRATION, OR SATISFACTORY QUALITY. SOFTGENETICS AND ITS SUPPLIERS MAKE NO OTHER WARRANTIES, CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS OR IMPLIED, WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR OTHERWISE AS TO ANY OTHER MATTERS. The provisions of this disclaimer shall survive the termination of this Agreement, howsoever caused, but this shall not imply or create any continued right to Use the Software after termination of this Agreement.
15. LIMITATION OF LIABILITY. IN NO EVENT WILL SOFTGENETICS OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY LOSS OF USE, INTERRUPTION OF BUSINESS, DAMAGES, CLAIMS OR COSTS WHATSOEVER OR ANY CONSEQUENTIAL, INDIRECT, INCIDENTAL DAMAGES, OR ANY LOST PROFITS OR LOST SAVINGS, EVEN IF A SOFTGENETICS REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS, DAMAGES, CLAIMS OR COSTS, OR FOR ANY CLAIM BY ANY THIRD PARTY. THE FOREGOING LIMITATIONS AND EXCLUSIONS APPLY TO THE EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION. SOFTGENETICS'S AGGREGATE LIABILITY AND THAT OF ITS SUPPLIERS UNDER OR IN CONNECTION WITH THIS AGREEMENT SHALL BE LIMITED TO THE AMOUNT PAID FOR THIS LICENSE, IF ANY. SoftGenetics is acting on behalf of its suppliers for the purpose of disclaiming, excluding and/or limiting obligations, warranties and liability as provided in this Agreement, but in no other respects and for no other purpose.
16. Export Rules. You agree that the Software will not be shipped, transferred or exported into any country or used in any manner prohibited by the United States Export Administration Act or any other export laws, restrictions or regulations (collectively the "Export Laws"). In addition, if the Software is identified as export controlled items under the Export Laws, you represent and warrant that you are not a citizen, or otherwise located within, an embargoed nation (including without limitation Iran Iraq, Syria, Sudan, Libya, Cuba, North Korea, Serbia and Crimea) and that you are not otherwise prohibited under the Export Laws from receiving the Software. All rights to Use the Software are granted on condition that such rights are forfeited if you fail to comply with the terms of this Agreement.
17. Governing Law. This Agreement will be governed by and construed in accordance with the substantive laws in force in the State of Pennsylvania, United States of America.
18. General Provisions. This is the entire agreement between you and SoftGenetics regarding the license of the Software, and it supersedes any prior representations, discussions, undertakings, communications, or advertising related to the Software. This Agreement may only be modified by a writing executed by an authorized officer of SoftGenetics, except that Updates may be licensed to you by SoftGenetics with additional or different terms. SoftGenetics may assign this Agreement to an affiliate or any other third party at SoftGenetics's sole discretion.

Table of Contents GeneMarker ${ }^{\circledR}$ HID v.3.0

CHAPTER 1 INSTALLING GENEMARKERHID 5
Computer System Requirements 6
Local-licensing Option 6
Installation. 6
Local Registration 7
Local Upgrade 7
Network-licensing Option 7
Install License Server Manager 8
Register License Server Manager for GeneMarkerHID Usage 8
Install GeneMarkerHID Software on the Client Computer 9
Upgrade of License Server Manager 10
Upgrade of GeneMarkerHID Software on Client Computer 10
QUESTIONS 10
CHAPTER 2 GENERAL PROCEDURE 11
Import Data Files 12
Procedure 12
Features 12
Raw Data Analysis. 1314
Main Toolbar Icons 14
What to Expect 15
Process Data 17
Run Wizard Template Selection. 17
Run Wizard Data Process 18
Run Wizard Additional Settings 21
Adjust Analysis Parameters 22
Re-analyze with Run Wizard. 22
CHAPTER 3 MAIN ANALYSIS OVERVIEW 25
Main Analysis Window 26
Sample File Tree 26
Synthetic Gel Image and Electropherogram with Peak Table 28
Report Table 33
Menu Options 34
File Menu 34
View Menu. 35
Project Menu 39
Applications Menu. 39
Tools Menu 40
Help Menu 41
Main Toolbar Icons 42
Additional Analysis Options 43
Browse By All Colors 43
Profile Comparison View 44
CHAPTER 4 FRAGMENT SIZING STANDARDS 45
Size Template Editor 46
Procedure 48
Icons and Functions 49
What to Expect 51
Size Calibration Charts 51
Procedure 54
Icons and Functions 54
What to Expect 55
SQ Flagging 55
CHAPTER 5 PANEL EDITOR 57
Overview 58
Project Panel 58
Panel Templates 58
Sample List 59
Overlay Trace 59
Minimum Intensity(RFU) Filter 60
Min Heterozygote Intensity: 60
Inconclusive Range (Stochastic Range Flagging): 61
Max Heterozygote Imbalance flagging: 61
Min Heterozygote Imbalance filter: 61
Stutter Filter by marker: 61
Allele Specific Stutter Filter: 61
Panel Table 63
Procedure 64
Pre-Defined Panels 64
Custom Panel Creation 65
Adjusting Panels - Manual and Automated Panel Calibration 66
OPTIONS, FUNCTIONS AND ICONS 67
Menu Options 67
Toolbar Icons 68
Project Panel 69
What to Expect 69
CHAPTER 6 REPORTS AND PRINTING 73
Report Table 74
Allele List 74
Forensics 74
MaSTR ${ }^{\text {TM }}$ and STRMix ${ }^{\text {TM }}$ compatible format: 74
Bin Table 75
Peak Table 77
Allele Count 78
LIMS Report 78
PRINT REPORT 79
Report Content Options 80
Include Customizable Logo in the Print Report 83
Icons and Functions 84
CODIS REPORT 85
Save Project 86
Save Selected Samples 86
CHAPTER 7 MIXTURE ANALYSIS. 87
Overview 88
Procedure 88
Identify the Presence of a Mixture 88
Mixture Analysis 90
Mixture Analysis Results 91
What to Expect Mixture Analysis and Database Search 92
With Reference File(s). 92
Without a Reference File 93
Hypothesis Testing Options 94
ICONS AND FUNCTIONS 96
Save and Export Result Tables 97
Mixture Analysis Equations 98
CHAPTER 8 RELATIONSHIP TESTING 103
Kinship Analysis using Identity by Descent 104
Overview 104
Procedure 105
Icons and Functions 106
Multi-Pair Kinship Analysis 107
Database Search: Locate Duplicate Samples and Nearest Relatives. 108
Overview 108
Procedure 108
Icons and Functions 110
Importing Population Specific Allele Frequency and Mutation Rate Information 112
Building the Database 113
Save and Print Report 113
automated Pedigree Trio Diagrams and Analysis using Family Group Tool 114
Procedure: 114
Deducing Missing Parent Genotype 116
Editing Personal Information 116
Save Report 117
Paternity Index Calculations 118
Overview 118
Procedure 118
Reverse Parentage 118
Save and Print Reports 119
CHAPTER 9 CELL LINE AUTHENTICATION - PERCENT SAME GENOTYPE SEARCH 121119
Overview 122
Building Your Database 122
Searching the Database 124
CHAPTER 10 ADDITIONAL TOOLS 127
Automated Control Concordance 128
Negative Control Concordance 129
Contamination Check and Elimination Database 129
Filename Group Editor 134
Output Trace Data 136
Project Comparison 136
Convert TXT to Binary 137
Export Electropherogram 138
Replicate Comparison Tool 138
Quality Sensor Evaluation (QS) 143
CHAPTER 11 USER MANAGEMENT 145
Overview 146
Procedure 146
User Manager 146
History. 147
Settings 147
Edit History/Audit Trail 148
By Sample 148
By Project. 148
INDEX 149

Chapter 1 Installing GeneMarkerHID

Chapter 1 Installing GeneMarkerHID
Computer System Requirements
Local-Licensing Option
Network-Licensing Option
Questions

Computer System Requirements

GeneMarkerHID software has been tested and validated for various computer systems. The minimum system requirements are:

Windows ${ }^{\circledR}$ PC

OS: Windows® 7-10
Processor: Pentium ${ }^{\circledR}$ III, 1 GHz CPU
RAM: 512MB
Available hard disk space: 20GB
Intel ${ }^{\circledR}$ Powered Macintosh ${ }^{\circledR}$
Parallels ${ }^{\circledR}$ desktop for Mac (Mac OS/virtual machine dependent) or Apple ${ }^{\mathrm{TM}}$ Boot Camp or VMware ${ }^{\circledR}$ Fusion (Mac OS/virtual machine dependent)
RAM: 2GB
Available hard disk space: 20GB
Installation of GeneMarkerHID is not supported on Linux or UNIX-based operating systems.
GeneMarkerHID will only recognize PC file formats. To convert Macintosh file formats to PC file formats, please download the ABI PRISM ${ }^{\circledR} 3100$ Genetic Analyzer Conversion Utilities to convert Mac files to PC files at: http://www.appliedbiosystems.com/support/software/3100/conversion.cfm

Local-licensing Option

The local-licensing option is the "traditional" setup. Each license is installed on and registered to a specific PC.

Installation

1. Insert the SoftGenetics $C D$ into the optical or CD-ROM drive. If your computer is not set to automatically open a CD, navigate to the optical or CD-ROM drive on the computer and open the directory.
2. Double-click the GeneMarkerHID Setup executable file (EXE)
3. The Installation Wizard will launch
4. Click the Next button in the Welcome window
5. Read the SoftGenetics End User License Agreement and click the I Agree button and Next in the Read Me File window
6. Select "Install GeneMarkerHID (Recommended)" in the Select Program window and click Next
7. Click Next in the Destination Location window to install GeneMarkerHID in the default folder. Click the Browse button to choose a different installation directory
NOTE: The default Destination Location for the GeneMarkerHID program is C: \ProgramFiles \SoftGenetics \backslash GeneMarkerHID \backslash ver\#
8. Click Next in the Select Program Manager Group window to accept the default Program Manager Group
NOTE: Changing the Program Manager Group default may affect program operability. It is recommended to accept the default.
9. Click Next in the Start Installation window to install GeneMarkerHID
10. Click Finish in the Installation Complete window
11. The Installation Wizard will close
12. Eject the SoftGenetics CD
13. Launch GeneMarkerHID by double-clicking the GeneMarkerHID desktop icon $\underline{O R}$ open the Start menu and navigate to SoftGenetics \rightarrow GeneMarkerHID, the version that was just installed \rightarrow GeneMarkerHID program
14. The Configure/Registration window will appear. Click Register Now to register the local license
15. Click Register Local Text-based Key from the Choose Registration Method dialog box

Local Registration

1. The Register Local Text-based Key window appears
2. If the computer GeneMarkerHID is being installed on has an internet connection, select Online Registration. If the computer does not have an internet connection or is connected to a proxy server, select Offline Registration.

Online Registration

A. Locate the Account and Password on the SoftGenetics CD.
B. Enter your Account, Password, and e-mail address information in the appropriate fields
C. The Request Code information is automatically generated by GeneMarkerHID
D. Click Register
E. Your software will be registered automatically. A confirmation e-mail will be sent to you once registration is complete.
NOTE: Some characters can commonly be misread. If you get an error trying to register, check for number " 1 " and lower case letter " L " or number " 0 " and upper case letter " O " confusion.
F. Launch GeneMarkerHID and begin analysis

Offline Registration

A. Copy and paste the entire Request Code string and type your Account and Password information from the SoftGenetics CD into the body of an e-mail
B. Send the email to tech_support@softgenetics.com
C. The Registration ID will be sent to you (via email) within one business day
D. Copy and paste the Registration ID from the e-mail into the Registration ID field

E. Click Register
F. Launch GeneMarkerHID and begin analysis

Local Upgrade

When using the default installation settings, each version of GeneMarkerHID will be installed in its own version specific directory. Thus installing a new version of the program will not overwrite any previous installations. Custom panels, size standards, and other files can then be transferred from the old version to the new version if desired.

Upgrade Procedure - Text-based

1. Double-click the GeneMarkerHID executable file (EXE) on the SoftGenetics Upgrade CD.
2. Proceed through the Installation Wizard as described in the Installation section above
3. Once the Installation Wizard is complete, launch GeneMarkerHID by double-clicking the new GeneMarkerHID desktop icon OR open the Start menu and navigate to SoftGenetics \rightarrow GeneMarkerHID, the version that was just installed \rightarrow GeneMarkerHID program
4. The Configure/Registration window appears. Click Register Now to register the local license
5. Click Register Local Text-based Key from the Choose Registration Method dialog box
6. Proceed through the Registration steps as described in the Registration section above
7. Launch GeneMarkerHID and begin analysis

Network-licensing Option

In the network licensing option, GeneMarkerHID programs share their licensing information over a local network. GeneMarkerHID can be installed on any number of PCs, but the maximum number of simultaneous users is equal
to the number of purchased network licenses. The LSM uses text-based registration - no hardware is required. Both software components are installed from the same EXE. The computer where License Server Manager Program is installed is considered the "Server" computer. Computers on the network other than the Server are called "Client" computers.

Install License Server Manager

NOTE: The LSM controls which computers are able to access GeneMarkerHID. If the computer running the LSM is turned off, no computer will be able to access GeneMarkerHID, as the LSM will be nonfunctional. For this reason it is recommended that the LSM be installed on a computer that is always on, or always on during working hours.

1. Insert the SoftGenetics $C D$ into the optical or CD-ROM drive. If your computer is not set to automatically open a CD, navigate to the optical or CD-ROM drive on the computer and open the directory.
2. Double-click the GeneMarkerHID Setup executable file (EXE)
3. The Installation Wizard will launch
4. Click the Next button in the Welcome window
5. Read the SoftGenetics End User License Agreement and click the I Agree button in the Read Me File window
6. Select "Install License Server Manager" in the Select Program window and click Next
7. Click Next in the Destination Location window, Next in the Select Program Manager Group window, and Next in the Start Installation window to enter the LSM installation wizard
8. Click the Next button in the Welcome window
9. Read the SoftGenetics End User License Agreement and click the I Agree button in the Read Me File window
10. Click Next in the Destination Location window to install LSM in the default folder. Click the Browse button to choose a different installation directory
NOTE: The default Destination Location for the License Server Manager program is C: \ProgramFiles \backslash SoftGenetics \backslash License Server

11. Click Next in the Start Installation window to install License Server Manager
12. Select the Launch License Server Manager option and click Finish
13. Click OK in the Install window to restart the system.
14. The Installation Wizard will close and the system will restart
15. Eject the SoftGenetics $C D$

Register License Server Manager for GeneMarkerHID Usage

1. Open License Server from the System or Icon Tray by clicking the LSM icon, which is a purple ' S '.
NOTE: A red star indicates the License server is not running. The icon with a

white star indicates the License Server is running properly.
NOTE: If the purple ' S ' icon is not present in your icon tray, you may need to first run the LSM. To do this, open the main Start menu and navigate to:

All Programs
SoftGenetics
License Server
License Server (EXE)

After clicking the License Server EXE, the Purple S icon should be available in your Icon Tray.
2. You may receive a message that the LSM is not registered. Click OK in the dialog box to proceed with registering License Server from the License Server Manager console.
3. Click the Register button to activate the Register Product window
4. Select GeneMarkerHID from the Register Product Name drop-down menu.
5. If the computer License Server is being installed on has an internet connection, select the Online Registration tab (default). If the computer does not have an internet connection select the Offline
 Registration tab.

Online Registration

A. Locate the Account and Password on the SoftGenetics CD
B. Enter your Account, Password, and e-mail address information in the appropriate fields
C. The Request Code information is automatically generated by License Server
D. Click Register
E. Your software will be registered automatically. A confirmation email will be sent to you once registration is complete.
NOTE: Some characters can commonly be misread. For this reason copy/pasting is strongly recommended.
F. Restart License Server to apply the registration information.

Offline Registration
G. Copy and paste the entire Request Code string and type your Account and Password information from the SoftGenetics CD into the body of an email
H. Send the email to tech_support@softgenetics.com
I. The Register ID will be sent to you (via email) within one business day
J. Copy and paste the Registration ID from the e-mail into the Register ID field of the Offline Registration tab
K. Click Register

This should complete the registration process.

Install GeneMarkerHID Software on the Client Computer

Now that the LSM has been registered, GeneMarkerHID must be installed on client computers, and then configured to the License Server Manager.

1. Proceed with installing GeneMarkerHID software on the client computer as described in the "Local-licensing Option, Installation" section above until the Configure/Registration window appears
2. Click Configure Network Client to configure the client software to contact License Server Manager
3. Click Configure Connection to License Server Manager from the Choose Network Configuration dialog box
4. Input Server Name or Server IP Address
5. Click Configure and GeneMarkerHID software will automatically open if connection is properly established and a license is available.
NOTE: It may not be obvious, but Configure is a button in the third window to the right. Click this button to test the configuration of the specified Server Name or IP Address.

Upgrade of License Server Manager

Activate the License Server Manager console
Repeat "Register License Server Manager for GeneMarkerHID Usage" section above

Upgrade of GeneMarkerHID Software on Client Computer

Install GeneMarkerHID software on the client computer by following the procedure in the "Install GeneMarkerHID software on the client computer" section above.
If the network configuration has not changed the software should activate without configuring the IP address of License Server.

Questions

If you have any questions during installation, setup, or program operation, please contact us at (814) 237-9340 OR (888) 791-1270 OR email us at tech_support@softgenetics.com

Chapter 2 General Procedure

Chapter 2 General Procedure
Import Data Files
Raw Data Analysis
Process Data
Adjust Analysis Parameters

Import Data Files

After installing GeneMarkerHID software you are ready to begin fragment analysis. First, raw data files must be uploaded to the program. Below is the list of file types supported by GeneMarkerHID. Note: many AB 3500 instruments have an option to export .hid files with normalized peak heights. For greatest accuracy of data analysis, GeneMarkerHID reads the non-normalized peak heights of files that are compatible with the software, including data files from ThermoFisher .fsa,.hid; IntegenX, .fsa; ANDE ${ }^{\circledR}$.fsa and generic .scf or .sg1 files

Procedure

1. Launch GeneMarkerHID
2. Click Open Data
3. The Open Data Files box will appear
4. Click Add button
5. The Open dialog will appear
6. Navigate to directory containing raw data files
7. Select all files by CTRL+A or use CTRL and/or SHIFT keys to select individual samples
8. Click Open button in the Open dialog
9. The files selected will appear in the Data File List field
10. Click OK button in the Open Data Files box and the samples will be uploaded to GeneMarkerHID

Features

There are several features available in the Open Data Files box to make data upload easier.

Add...

Used to locate and select raw data files for upload. Click the arrow button next to the Add button to see the four most recently accessed directories. Use the View - Preferences - Startup settings tab to set default locations.

Remove

Used to remove samples from the Data File List. Highlight the sample to remove by single left-clicking it in the Data File List then click Remove.

Remove All

Removes all sample files from the Data File List field.
Add Folder...
Click Add Folder to upload raw data files from a specific folder in the file directory tree.

Dyes Reporting, especially print reports from non-color printers, may require that the dye name is included. Dye names of Applied Biosystem, AB (ThermoFisher), Promega and Qiagen available for the imported data files. Initial default dye names are set to $A B$ dye names. To change the dye name setting for the data channels:

1. Select the Dyes button
2. Select the tab for the number of colors (4,5 , or 6 dye chemistry)
3. Select Change Chemistry
4. Select the appropriate manufacturer
5. Click Save to set this as the default for the dye names
6. To create an option for a new chemistry, select the page icon and enter the appropriate manufacturer and dye names

For simplicity in reporting or presentation of results from different chemistries, some labs choose to enter the color, rather than the dye name. The dye names will be displayed in the Main analysis screen and in any print report where the dye display is selected in the print report settings (see chapter 6 for Report and Printing). Data amplified with PowerPlex Fusion®-6C is used in the figures below to illustrate the display and reporting that includes dye names.

Dye icon in the main tool bar displays the dye names for each channel. Allele reports displaying the dye name for each trace; especially beneficial for allele reports printed in black.

Raw Data Analysis

Once the raw data files are uploaded, the Raw Data Main Analysis window appears. Double-click the samples in the Sample Tree to open the individual Raw Data Traces. If selected from the tool bar toggle, he Synthetic Gel Image displays the unprocessed data in a traditional gel format with larger fragments located on the right. The Electropherograms display fluorescent signal intensities as a single line trace for each dye color. The signal intensities, recorded in Relative Fluorescent Units (RFUs), are plotted along a frame scale in the Raw Data Analysis window with fragment mobility from right to left. The largest size fragments are on the far right of the trace.

Main Toolbar Icons

Spike Removal: Removes peaks from voltage spikes caused by micro-air bubbles or debris in the laser path. This option is selected by default in the Run Wizard.Saturation Correction: A synthetic peak is created based on peak shape before and after saturation. The results of these will be less accurate than that of non-saturated peaks. This option is selected by default in the Run Wizard.

Smooth: This function smooths the baseline by eliminating smaller noise peaks. This option is selected by default in the Run Wizard.

Baseline Subtraction: Selecting this option will remove the baseline completely so that the Y -axis will be raised above the noise level. This option is selected by default in the Run Wizard.

Auto Pull-up Removal: Automatically removes peaks caused by wavelength bleed-through to other wavelengths. This option is selected by default in the Run Wizard.

Manual Pull-up Correction: This allows the user to manually adjust larger pull-up peaks in case the Auto Pull-up Removal function has not corrected the problem. It is recommended to de-select Pull-up Correction in the Run Wizard when using this function.
$2^{\text {nd }}$ Derivative Trace: This feature reduces high background noise and sharpens peaks. Baseline fluctuation caused from dye blobs or the DNA template in PCR can also be reduced with this function. It is recommended to de-select Spike Removal in the Run Wizard when this function has been activated.

Note: Raw data icons are applied to the raw data. These icons are recommended for research applications; user management can exclude access rights for analysts.

What to Expect

The raw data correction icons can be selected individually in the Raw Data Analysis window. The images below demonstrate how the data will look before (left image) and after (right image) the parameter is applied.

Range

AutoRange - Analyzes from 0 to end of trace for size call
Manual Range - user-defined range
Right-click in gel image and select Get Start Point

Smooth

Fourier frequency transformation (FFT) to determine frequency domain
Use only top 40% of lowest frequencies
Smoothing broadens peaks and therefore you can lose resolution
Enhanced Smooth - Same as Smooth but use only top 20\% of lowest frequencies

Baseline Subtraction

Use 20% of lowest intensities (to the right of the beginning of the range)
Looks at trace in 500-600 frame sections

Pullup Correction

$\mathrm{Ax}=\mathrm{B}$
A being the major coefficient
Input matrix or use single dye adjustment up to 0.20 for small corrections

Chapter 2 General Procedure

When Manual Pullup correction is chosen, a .txt or .mtx matrix file can be uploaded and used to deconvolute dye colors.

NOTE: De-select automatic Pullup Correction in the Run Wizard Data Process box if a manual matrix correction has been applied.

Saturated Peak Correction

ABI instrument saturated peaks are typically >8000 RFU
The top of a saturated peak looks split
A small pullup peak may be present under the saturated peak
GeneMarkerHID takes the small pullup peak and adds it to the split in the saturated peak

Spike Removal

Caused by overheating of camera chip, voltage spike, etc
Spikes usually only 1-2 frames wide; peaks usually 5-10 frames wide
Create a first derivative trace of the raw data
Spikes are the $1^{\text {st }}$ DT outliers (3-5 sigma)

Second Derivative Trace

$(\mathrm{A} 1-\mathrm{A} 2)-(\mathrm{A} 2-\mathrm{A} 3)=\mathrm{A} 1+\mathrm{A} 3-2(\mathrm{~A} 2)$
Use when you have a fat base to your peaks (ex. Dye blob under peak, etc)
NOTE: Do not use $2^{\text {nd }}$ DT with Spike Removal because real peaks look like spikes.

Process Data

After the raw data files have been uploaded to GeneMarkerHID, they are ready to be processed. The processing step includes application of a sizing standard, filtering of noisy peaks, and comparison to a known allelic Panel. GeneMarkerHID combines all these steps in one simple tool called the Run Wizard. To access the Run Wizard simply click the Run Project icon in the main toolbar.

Run Wizard Template Selection
 Procedure

1. Click the Run Project icon in the toolbar.
2. The Run Wizard Template Selection dialog box will appear.
3. Select a template (a previously saved set of size standard, standard color, and analysis type named for future use), $\underline{O R}$ select a new combination of size standard, standard color, and analysis type.
4. Click Next when finished.

Icons and Functions

Template Name

Select from existing pre-made templates or create your own by entering a Template Name and clicking the Save button.
 When the settings for all sections of the template have been completed (Template Selection, Data Process and Additional Settings) use the Back button to return to the Template selection screen and then select Save. Note: only individuals with access rights to change analysis parameters may save Run Wizard Templates.

To create a new template, click Select an existing template or create one. A template can also be selected from the list of available templates in the left section of the window and then saved for future use by clicking the Save button.

If you do not want to use a template, select the appropriate size standard, standard color, and type of analysis; Use last template will automatically be selected.

Panel

GeneMarkerHID comes preloaded with many common kit Panels including Promega's PowerPlex kits and ABI's Identifiler and Globalfiler kits, Qiagen's Investigator kits. Additional Panels can be imported by selecting the Open Files icon next to the Panel field. A custom Panel can be created in the Panel Editor tool. See Chapter 5 Panel Editor.

Panel Editor: A Panel can be selected from any available from the drop-down menu or can be viewed and selected by clicking the Panel Editor icon.

Import a Panel: If a Panel cannot be found in the Panel Editor tool, it can be imported by clicking on the Import a Panel icon.

Size Standard

GeneMarkerHID comes preloaded with many common size standards including GeneScan 500. GS600, ILS 500, ILS600. A custom Size Standard can be created by selecting the Size Template Editor icon next to the Size Standard field. GS500_1 is a commonly used size standard .xml file; the two smallest fragment, the 250 bp fragment and the two largest fragments are disabled - See Chapter 4 Fragment Sizing Standards.

Size Template Editor: This allows the user to check sample files against a selected size standard, modify and save the size standard for future use, or create a new size standard.

Standard Color

Select the dye color which contains the internal lane standard.

Run Wizard Data Process

Procedure

5. The Data Process window of Run Wizard appears.
6. Select the appropriate analysis settings in the Data Process window and click Next to continue.

Icons and Functions

Raw Data Analysis

Auto Range (frame)

The range in camera frames will automatically find the processable data range. If Auto Range is not selected, manually enter the start and end frame numbers of the data set for analysis.
NOTE: If automatic size call fails due to high saturation in the primer front, de-select Auto Range and manually input the required data range.

Smooth

Smoothes the baseline by eliminating smaller noise peaks.

Enhanced Smooth

This feature is used only in cases where the data is extremely difficult to analyze and cannot be corrected with the Smooth function.

Pull Up Correction

Makes minor matrix corrections to pull up peaks (up to 20%) directly underneath the major peak This function removes peaks caused by wavelength bleed-through to other wavelengths. The function should be disabled if a Manual Pull-up Correction was used in the Raw Data Analysis window.

Spike Removal

Removes peaks from voltage spikes caused by micro-air bubbles or debris in the laser path. Spikes are typically less than a base-pair wide. Do not select Spike Removal when $2^{\text {nd }}$ Derivative Trace has been applied.

Saturation Detection

Uses a conservative algorithm to evaluate peaks for saturation detection. Flags the allele in yellow - quality reason SD (saturation detection) displayed in peak table

Saturation Repair

The software will analyze saturated data points by creating a synthetic estimate of the peak shape based on the curves prior to saturation. The results will be less accurate than that of non-saturated peaks. Flags the allele in yellow - quality reason SR (saturation repair)

Classic Baseline Subtraction

This function removes the baseline completely so that the Y -axis will be raised above the noise level. It uses 20% of lowest intensities (to the right of the beginning of the range) and looks at the trace in 500-600 frame sections. This is the same as the Baseline Subtraction setting in GeneMarkerHID v.2.7.6 and earlier versions.

Superior Baseline Subtraction

Is a similar algorithm to classic baseline subtraction but it looks at the trace in 100 frame sections. This baseline subtraction method is excellent for samples that have a raised bubble that is occasionally present in the low molecular weight; and for samples with closely spaced peaks.

Sample with a raised bubble baseline in the raw data, processed with classic baseline subtraction (left) and superior baseline subtraction (right)

This feature is used only in cases where the data has excessive baseline in one or more of the dyes, or has an interfering slope from the ion front in the smaller marker ranges. The function uses the second derivative of the absolute value for every 30 data points and looks at the trace in 300 frame sections

In situations where there is an extended ion front in the mini-STR range Enhanced Baseline Subtraction should be used.

Size Call

GeneMarkerHID offers two sizing methods:

Local Southern

Used in most genotyping software applications and is recommended for most analyses - local Southern and modified local Southern. This method is based on the idea that smaller size fragments run faster. Plot a size v. time graph and overlay a size v. 1/time graph to determine linear trace. (Southern, E.M. "Measurement of DNA Length by Gel Electrophoresis." 1979. Analytical Biochemistry. 100, 319-323).

Cubic Spline Method

Cubic Spline is offered as an alternative method that may be more appropriate for some data. This method uses a cubic equation to connect known points on the size v. time graph. An example of a cubic equation: $a x^{3}+b x^{2}+c x+d$. (The Astrophysical Journal. December 1, 1994. 436, pages 787-794.)

Local Southern Method

Cubic Spline Method

Allele Call

The Allele Call section allows the user to set allele calling range, detection thresholds and filters.

Auto Range

The software will identify peaks in the processable data range for each lane.

Manual Range

To select a specific analysis region, de-select Auto Range and input the desired base pair range. Peaks outside the Manual Range will not be called.

Max Intensity

Maximum RFU threshold of peak height. Peaks above this value will be flagged with a yellow Allele Label, given a Quality Rank of Check, and marked with HI Quality Reasoning.

Peak Detection Threshold

NOTE: The Peak Detection Threshold parameters are only applied to peaks outside of the Panel Markers. To adjust settings for peaks within Panel Marker ranges, see Chapter 5 Panel Editor.
The peak detection thresholds setting has the option to apply the same minimum intensity and percent global max to all dyes (figure left) or to assign values per dye (figure right)

Min Intensity

Minimum RFU threshold of peak height used for peak detection. Peaks below this value will not be called.

Percentage Global Max

Relative minimum intensity of allele peaks to the $5^{\text {th }}$ highest peak in the dye color used for peak detection. Peaks below this value will not be called.

Note: Versions 1.6-2.85 had an automatic peak score filter (0.02). Version 1.9.0 had the option to turn off the score filter in the Data Process screen of the analysis template. Feedback from forensic laboratories indicated that peak height and height ratio were the preferred method for filtering peaks, therefore, in Version 2.9.5 and above the score filter has been removed from the software.

Save Icon will save any changes to the analysis template (Run Wizard Settings)

Run Wizard Additional Settings

Procedure
7. The Run Wizard Additional Settings box appears
8. Select an Allelic Ladder and adjust the Peak Score parameters or check Auto Select Best ladder and Auto Panel Adjust.
9. Click OK
10. The Data Processing box appears
11. The data is sized, peaks are filtered, and the Panel is applied
12. Click OK when the Data Processing box is finished.

Functions

Allelic Ladder

Permits the selection of a sample containing an allelic ladder. If the user selects one ladder, the ladder will be in bold font and is set to the top electropherogram in the Main Analysis window. All samples will be analyzed using this selected ladder.

Positive Controls

During validation, the laboratory can use the positive control template tool to include positive control genotypes to automate positive control concordance. See Chapter 10, Additional Tools, for details on positive control concordance settings.

Allele Evaluation

Peak Score

User-definable confidence level of the allele call. Peak score is an algorithm that takes into account signal-tonoise ratio and peak morphology. Rejected peaks have a red allele flag, peaks that need to be checked have a yellow allele flag, and samples that have passed appear in green.

Mixture Evaluation

Select this option to identify mixture samples. This option must be selected to provide access to the Mixture Application for deconvolution and LR results of two person mixtures (See Chapter 7 Mixture Analysis).

Auto Select Best Ladder

GeneMarkerHID identifies ladder samples in the dataset as defined in the View \rightarrow Preference \rightarrow Forensic \rightarrow Ladder Identifier field. Ladder samples are then compared to the chosen Panel. Each ladder that is within the specified range of the selected panel will pass and appears in bold font in the Sample File Tree. Auto Select Best Ladder will analyze each sample file with the passing ladder that best matches that sample. The print report provides the file name of reference ladder used for each sample. The file name used for each sample is displayed above the electropherogram after the sample file name.

Additional options under Auto Select Best Ladder are available in versions 2.9.5 and above. The setting in the image above are consistent with previous versions of GeneMarkerHID. New settings: Allow Match Number Variance, Min Average Size Difference and Use Ladder Library enable the laboratory to place additional criteria on the best ladder selection pool for projects where a collection of ladders (ladder library) are used.

Auto Panel Adjustment

Performs calibration of the panel. xml to the allelic ladder files, the Markers and Bins of the chosen Panel will be aligned with the peak positions of the Ladder samples in the dataset (within a five basepair shift). Ladder samples are identified by GeneMarkerHID as defined in the View \rightarrow Preference \rightarrow Forensic \rightarrow Ladder Identifier field. Major alleles and variant (or virtual) alleles are specified in the Control Column in the Panel editor. See Chapter 5 Panel Editor. This information is used for pattern recognition and automatic panel adjustment.

NOTE: Panels that do not contain variant (virtual) alleles can be manually adjusted in the Panel Editor by first clicking the Major Adjustment of Panel icon then the Minor Adjustment of Panel icon.

Adjust Analysis Parameters
After the clicking OK in the Run Wizard Additional Settings box, the Data Processing box appears. The raw data is being processed and sized, then the filtering parameters are applied, and finally a Panel is applied (if selected). Click OK in the Data Processing box when analysis is complete.

Review the results in the Main Analysis window. See Chapter 3 Main Analysis Overview. If you notice many false positive peak calls, you may need to adjust the analysis parameters. There are three options for adjusting the analysis parameters as discussed below.

NOTE: Manual edits will be lost when data is re-analyzed.

Re-analyze with Run Wizard
To re-analyze with the Run Wizard tool, simply click the Run Project icon in the main toolbar. The Run Wizard will launch and the most recently selected parameters will be displayed. Adjust parameters as necessary and click OK in the Run Wizard Additional Settings box. The Use Old Calibration box will appear with the option to Call Size Again. Only select Call Size Again if the Run Wizard Template Selection Size Standard selection was changed or any of the Run Wizard Data Process Raw Data
 Analysis parameters were changed. Click the Apply to All button. The Data Processing box will appear again and the data will be re-analyzed with the new parameters.

Quality Sensor Evaluation

If the chemistry has quality sensor peaks, such as the Investigator ${ }^{\oplus} 24$ plex kit, this setting can be used to flag samples that break the rules set in the View Preferences - Sample Quality tab. Select the appropriate Q and S alleles. Then click OK. Any peaks that do not meet the criteria set in the Sample Quality tab will be flagged qS. A mouseover pop-up message will indicate potential issues with the sample.

Researchers may have the need to Re-analyze Individual Samples - select the tool bar icon $\Delta \bullet$
To re-analyze an individual sample, dye color, or marker, click the Call Allele icon in the main toolbar. The arrow next to the icon opens the drop-down menu with additional options. Click an option from the drop-down and the Recall Allele box will appear. Adjust parameters as necessary and click OK. The new parameters will be applied.

All Samples

Applies the new parameter settings to all samples in the dataset - similar to Run Wizard and Auto Run.

Open Samples
Applies the new parameter settings only to samples that are checked in the Sample File
 Tree.

Current Sample

Applies the new parameter settings only to the sample highlighted in the Sample File Tree.

Call the Dye

Applies the new parameter settings to the dye selected in the Recall Allele \rightarrow Call Allele by Dye field.
Call the Marker
Applies the new parameter settings to the marker selected in the Recall Allele \rightarrow Call Allele by Marker field.

Chapter 3 Main Analysis Overview

Chapter 3 Main Analysis Overview

Chapter 3 Main Analysis Overview
Main Analysis Window
Menu Options
Main Toolbar Icons
Additional Analysis Options

Main Analysis Window

The main window of GeneMarkerHID has an easy to use layout. The sample files are displayed on the left, the Synthetic Gel Image is displayed at the top, Electropherograms appear below the gel image, and the Report Table is on the right side of the window.

To resize the frames in the Main Analysis window, simply place the cursor over the partitions that separate the Electropherogram/Sample File Tree/Report Table. The cursor will change to a two-headed arrow bisected by two vertical lines. Hold down the left mouse button and drag the gray vertical line in the direction you wish. To open and close the frames, use the Show/Hide icons in the main toolbar.

Main Analysis Window

Sample File Tree

The Sample File Tree of the main analysis window contains two folders. The first is the Raw Data folder which, when expanded, displays a list of all the dataset samples. When a sample is double-clicked its preprocessed electropherogram trace will appear in the Raw Data Analysis window. See Chapter 2 General Procedure.

The second folder, Allele Call, also contains a list of all the samples, but when the filename is double-clicked the sample's electropherogram trace appears in the Main Analysis window with all sizing information and allele call filtering applied. The Allele Call folder also flags each sample with a green sheet, yellow sheet or red strike-through indicating size calling success. See Chapter 4 Fragment Sizing Standards. A red question mark

indicates one or more of the analysis parameters were not met for that sample (rules were fired). Detailed flagging is found in the allele label and the peak table below the electropherogram in the quality reasons column. Red question mark flagging is also assigned to samples with null marker(s) and samples with AMEL and Y-STR marker conflict(s) when amplified with a multiplex that contains AMEL and Y-STRs in addition to autosomal markers. If the analyst resolves all of the quality reason flag(s) for a sample, the red question mark is replaced by an E. This provides a very quick way for any reviewer to select only the samples that had flagging completely resolved by the analyst; as is the scenario for use of the software as an expert system where technical review is needed for any sample that required analyst intervention to pass the criteria for CODIS export.

Right-click the sample filename in the Raw Data or Allele Call folder to see additional options.

Sorting Options

Select Page

Opens electropherogram traces for the number of samples specified in the View \rightarrow Preference \rightarrow Display Settings \rightarrow Max Chart \# In Page field. Hot Key = Page Up/Page Down

Select Next Group

In descending order, selects the same number of samples previously selected by Select Page, grouping options (see Sample Grouping section below) or double-click option.

Select Max

Opens electropherogram traces for the number of samples specified in the View \rightarrow Preference \rightarrow Display Settings \rightarrow Max \# Open Charts.

Deselect All

Unselects all selected samples in the Sample File Tree list and closes the electropherogram traces.

Sort Samples

Opens the Sort Sample Options box. Select First, Second, and Third Order sorting from the drop-down menu options Sample Type, File Name, Lane Number, Well ID, and Size Score. Hot Key = F3

Search Options

Search File

Opens the File Search box. Enter any part of a filename to search for the sample in the list. Click the Search button. Left-click and use CTRL or SHIFT key to highlight samples then click the Open Selected button. The electropherograms of the selected samples will open in the Main Analysis window. Hot Key = CTRL+F

Sample Information

Sample Info

Opens the Sample Information box. A list of Properties appears and includes information like; Sample Name, Well ID, Lane Number, Instrument Name, and Chemistry. The list of Properties varies depending on the file type. Hot Key = F2

Edit Comments

Opens the Edit Comments box. Enter information in the Comments field. The last ten comments will be stored and can be subsequently selected for future samples. The Sample Comments will appear on the Print Report. See Chapter 6 Reports and Printing. Hot Key = F4

Disable Samples
 Disable Sample
 Opens the Input Disable Reason box and marks the sample with a red strikethrough. A disabled sample cannot be selected for display in the Main Analysis window and will not appear in the Report Table if View \rightarrow Preference \rightarrow Options \rightarrow Show Disabled Samples in Report is deselected. Select a Comment Template or enter a new comment in the Comments field and click OK to disable the sample. Hot Key = CTRL+DEL

Add Samples

From the main toolbar, select Project \rightarrow Add Samples to Project. The Open Data Files box will appear. Click the Add button to select additional samples to add to the project and click OK. The added samples will be sized and the allele
 calls will be filtered according to the parameters set in the Run Wizard.

Sample Grouping

From the main toolbar, select View \rightarrow Preferences \rightarrow Others \rightarrow Enable Sample Grouping. Then return to the main toolbar and select Project \rightarrow Apply Sample Grouping. The File Name Group Editor tool will appear (See Chapter 8 Additional Tools). Select Group and Control identifiers and click Match. Click OK to apply the matched groups. Group numbers will appear next to the filenames in the Sample File Tree. Use the Select Next Group right-click menu option OR CTRL+PageUp/Down to open samples in a group. To disable the Sample Grouping feature, go to View \rightarrow Preference \rightarrow Others and uncheck Enable Sample Grouping.

Synthetic Gel Image and Electropherogram with Peak Table

The Synthetic Gel Image and Electropherogram displays are associated in the Main Analysis window. Both display the fragment information in a visual form. When GeneMarkerHID is initially launched, all dye colors are displayed in the Synthetic Gel Image and Electropherogram at once. Single left-click the Show Color icon in the main toolbar to cycle through the dye colors or use the Show Color drop-down menu to disable individual colors or Show/Hide All colors.

Navigation

Zoom In/Out

In the Synthetic Gel Image or the Electropherogram, hold down the left mouse button and drag a box from upper left to lower right around the area you would like to zoom in on. To zoom back out, hold down the left mouse button and drag a box in the opposite direction from lower right to upper left. The user may also use the Zoom icons in the main toolbar to zoom in and out. The main analysis window also allows the user to manually set the x and y axis with the Set Axis icon.

Horizontal Movement

The Synthetic Gel Image and the Electropherogram are synchronized to allow the user to view both images at once. To move the images in the horizontal direction, use the top slider bar (below the toolbar) to scroll the image in either direction, or hold down the right mouse button and drag the trace right or left.

Marker/Locus Specific Viewing
To scroll through individual markers/loci, select a marker from the Marker drop-down list in the main toolbar. To view subsequent markers, use the Up/Down Arrow keys.

Synthetic Gel Image Features

The Synthetic Gel Image displays all samples in the dataset vertically. The direction of fragment mobility is horizontal with the small size fragments on the left and the larger fragments on the right so that the gel aligns with
the electropherogram trace display. Move the mouse pointer over the Synthetic Gel Image to reveal the sample lane filename.

Image Utilities

Click the Image Utilities icon in the upper left corner of the Synthetic Gel Image. A fly-out menu appears with the following options:

Copy to Clipboard

Copies the Synthetic Gel Image to the Windows clipboard for pasting into other applications such as Microsoft PowerPoint.

Save Image

Allows the user to save the Synthetic Gel Image as a BMP image file.

Show in Window

Opens a separate window containing the Synthetic Gel Image. The separate window can be maximized for closer gel image inspection.

Image Display

Intensity

Move the Intensity slide bar, located in the upper left corner of the Synthetic Gel Image, up and down to adjust the intensity of the fragments displayed.

Grey-Scale

Go to View \rightarrow Preference \rightarrow Display Settings \rightarrow Gel Image. Select Gray for Single Dye to change the single dye Synthetic Gel Image to black and white when only a single dye color is selected (when multiple dye colors are selected the fragments will appear in their respective colors). Click the Background in White option to reverse the black and white exposure for single dye color gel
 images.

Electropherogram and Peak Table Features

The Electropherogram displays fluorescent signal intensities from capillary electrophoresis instruments as a single line trace for each dye color. The signal intensities are recorded in Relative Fluorescent Units (RFUs) which are plotted along the y-axis. Along the x-axis are the basepair sizes of the fragments. The frame units plotted along the x -axis in the original Raw Data Analysis window are converted to basepair size units as defined by the Size Standard selected and the Internal Lane Standard (ILS) of the individual samples. Fragment mobility is from right to left with the smallest size fragments on the far left of the trace.

The Peak Table contains information about the called peaks currently displayed in the Electropherogram.

Electropherogram Trace Display
 Range

The basepair size range (x-axis) is as set in the Run Wizard Data Process Allele Call options box. The RFU range (y -axis) is variable and will re-adjust according to the maximum peak height in the trace. To manually set x and y-axis ranges, use the Set Axis icon in the main toolbar.

Cursor Locator

The x and y-axis position of the mouse pointer in the electropherogram is displayed in the upper right corner of the electropherogram.

Allele Call

If a Panel is applied to the data, then grey horizontal bar Markers will appear above the electropherogram indicating locus ranges. Bin ranges appear as dye-colored brackets above and below the sample trace. Allele Labels appear below the electropherogram and are associated with the center of each called peak which is also marked by a light grey vertical line in the electropherogram. If a Panel is not applied, then Allele Labels for called peaks will only indicate the basepair size of the peak.

The red horizontal line (seen here in the figure on the right) is to alert analysts to trends in the data. These areas of the data have a more elevated baseline or noise-to-signal ratio (often associated with poorly resolved peaks) than the nearby regions of the trace which sometimes masks very minor peaks.

Peak Table

The Peak Table can be displayed below the Electropherogram by clicking the Show Chart/Table icon in the main toolbar. Right-click in the Peak Table and select Show Columns. The Show Columns fly-out appears with column options.

File Name

Reports the full file name of the .hid or .fsa file

Sample Name

Reports the sample name from the Property sample name in the .fsa or .hid file

Dye

Indicates the dye color of the peak.

Size

Indicates the basepair size of the peak (x -axis).

Height

Indicates the peak height in RFUs (y-axis).

Height Ratio

The value obtained when the peak's height is divided by the height of the highest peak in the dye color or Marker. Note: During data review it is sometimes helpful to select a different peak for comparison. To change the reference peak used for the height ratio, right mouse click on the peak in the electropherogram or in the report table and select Set Reference peak height to refresh the calculated peak height ratios.

FWHM Full Width at Half Maximum

The peak width at half height is displayed in this column.

Area

Indicates the area under the curve of the peak. The area calculation begins and ends along the x -axis as indicated by the Start and End columns of the Peak Table respectively.

Area Ratio
The value obtained when the peak's area is divided by the area of the highest peak in the dye color or Marker.
Marker (Panel Only)
Indicates which Marker (Locus) the peak is contained in.
Allele (Panel Only)
Indicates which Bin the peak is contained in.
Difference (Panel Only)
Indicates the absolute value in base pairs of how far the peak center is from the Bin center.
Quality (Panel Only)
Assigns a Pass/Check/Undetermined quality ranking for each peak with regard to the peak Score as set in the Run Wizard Additional Settings box (See Chapter 2 General Procedure) and/or software editing of the original raw data, such as correction of saturated peaks (SAT Repaired).

Score

The peak quality score is calculated based on signal-to-noise ratio and peak shape or morphology. Lower scores indicate poorer quality peaks. Additionally, the Score value is a based on an exponential curve.

Start/End

Indicate the beginning and end of the Area calculation for the peak.

Allele Comments

Software and user edited comments appear in the Comments column.

Sample Comments

Added by the user with a right mouse click on the sample name in the sample list at left; select Edit Comments to add new comment or select a comment from the list

Quality Reasons

Indicates the reason why a peak received a Quality rank of Check or Undetermined. For explanation of the two and three letter codes see below $\underline{O R}$ click the Help icon above the Report Table.

LS $=$ Low Score

Quality Score is based on Signal-to-Noise Ratio and Peak Morphology and the Pass, Check, Reject ranges are set in the Run Wizard Additional Settings box.

OL = Off Ladder

Peak is outside of the marker range.

$\mathrm{OB}=$ Out of Bin

Peak is within the marker range but outside of a bin.

BC $=$ Bin Conflict

More than one called peak present within a bin.

SR = Saturated (Repaired)

Intense peaks with characteristic morphology are identified and "repaired" for allele calling. Not for use in quantitative calculations.

SP = Saturated (Pull- up)

Intense peaks may cause "pull-up" or additional peaks to appear in other dye colors.

PL = Beyond Ploidy

When the number of peaks identified within a marker exceeds the maximum number of peaks expected as set in the Panel Editor Edit Panel box.

LO = Low Intensity
Single peak called below the Minimum Homozygote Intensity threshold because a second peak was detected above N-x percentage value as set in the Panel Editor Edit Marker box

HI = High Intensity

Peak intensity approaches and/or exceeds the maximum peak intensity filter as set in the Run Wizard Data Process box.

IMB = Heterozygote Imbalance

Peak intensity does not exceed the minimum percentage of the major peak within the marker as set in the Panel Editor Edit Marker box.

IHE = Inconclusive Heterozygous

Peak intensity is within the heterozygous inconclusive range set for this locus in the Panel Editor Edit Panel box.

IHO = Inconclusive Homozygous

Peak intensity is within the homozygous inconclusive range set for this locus in the Panel Editor Edit Panel box.

SD = Saturation Detected

Possible saturation is detected based on pull up peaks under the main dye

Save Peak Table

Click the Save Peak Table icon in the main toolbar to export the Peak Table information currently being displayed in Excel (.xls) or tab-delimited Text (.txt) format. All samples peak information for only the dye colors selected will be exported in the table. Additionally, the user can right-click in the Peak Table and select Copy Table (Hot Key = CTRL+C) to place the current table information onto the Windows clipboard. The information can then be pasted into most common spreadsheet or word processing programs including Microsoft Excel.

Editing Peaks

Double-click the vertical grey peak center bar to select a peak. Right-click anywhere in the Electropherogram or Peak Table to see additional menu options.

Insert Allele

Right-click at the place in the electropherogram where you would like to add an allele and select Insert Allele. The basepair size or bin name will be applied in the Allele Label and the peak specifications will be calculated and displayed in the Peak Table.

Delete/Undelete Allele

Right-click at the vertical grey bar indicating the center of the called peak or the peak cell in the Peak Table and select Delete (Hot Key = DEL). To call the allele
 again, right-click the peak and select Undelete (Hot Key = SHIFT+DEL).

Confirm/Unconfirm Allele

If a peak is given a low quality score, it will receive a Check (yellow) or Undetermined (red) Quality ranking. To give the peak a Pass (green) Quality ranking, right-click the peak center bar and select Confirm (Hot Key = CTRL+M). The peak will be marked Pass (green) and receive a "Confirmed" comment in the Peak Table. To un-confirm the allele, select Unconfirm from the right-click menu (Hot Key = CTRL+ALT+M).

Confirm/Unconfirm All

Confirm All and Unconfirm All options perform the same actions as the Confirm/Unconfirm allele except that the Quality ranking for all peaks in that dye color for that sample will be affected.

Edit Allele

Right-click an allele in the Electropherogram or Peak Table and select Edit Allele. The Edit Allele box appears. Add or change the values in the Allele and/or Size field. The Allele field will be blank if no Panel has been applied to the dataset. Check Confirm the Allele to automatically give the peak a Quality rank of Pass (green).

Allele Comments

Right-click an allele in the Electropherogram or Peak Table and select Edit Comments. The Edit Allele Comments box appears. Select a comment from the Comments Template list or enter a new comment in the Comments field. Click OK and the comment will appear in the Comments column of the Peak Table. Only one user edited comment can be added to a peak. Comments automatically generated by the software cannot be removed. Additional user comments will simply be added next to the software comment.

View History

Opens the Show Edit History window. Shows a record of all manual edits performed on the peak. The Show Edit History window is only active when the Help \rightarrow User Management \rightarrow Settings \rightarrow Record Data Edit History option is selected. Print preview and print or save as jpeg, png or pdf for paperless record of audit trail. See Chapter 9 User Management.

Report Table

The Main Analysis window Report Table contains additional information about sample peaks. See Chapter 6 Reports and Printing.

Navigation

The Report Table is linked to the other frames in the Main Analysis window. Double-click on the desired allele $\underline{O R}$ use the Arrow keys to move to the cell of interest and hit Enter key OR use Alt + Arrow keys to move to different cells and zoom in on the peak in the Electropherogram.

Select multiple cells by holding down SHIFT key $\underline{O R}$ hold left mouse button and drag over desired cells.

The rules by which the Report Table and other frames in the Main Analysis window are linked are controlled by options in the View \rightarrow Preferences \rightarrow Others tab.

Allele Report Settings	$\underline{\square}$
Report Syle	Options
A Allele List	Extend Diploid Homozygous
(. Forensics	Show Âllele Name
- Bin Table	Γ Show Size (0.1bps)
$\stackrel{\sim}{\sim}$ Peak Table	Γ Show Heright
C Allele Count	I ShowArea
	1 Show Score
IV Show File Name	$\sqrt{\bar{v}}$ Show $\sqrt{\text { wax }}$ wher no allele call 「 Show Only Uncertain Alleles
Γ Show Sample Name	
-Orientation	Iv Show Reiected Low Scote Alleles
ic Hotizontal \sim Vertical	- Hide Exta Sample Names
「 Exclude Sample index	Γ Exclude Report Header-
@k	Cancel

Display Settings

Click the Report Settings icon in the Report Table toolbar. The Allele Report Settings box will appear. Select different Report Styles to see additional options. Additionally, select View \rightarrow Preferences \rightarrow Others \rightarrow Show Disabled Samples in Report to include samples that are disabled in the Sample File Tree.

Sort Options

Sort by Marker

Select Sort by Marker from the right-click menu and choose from the fly-out menu to sort Ascending or Descending. If Ascending is chosen, then low quality peaks will be sorted to the top of the table. If Descending is chosen, then the lower quality peaks will be placed at the bottom of the table. This option is only available with Marker Table and Allele Count Report Styles.

Sort by Column

Select Sort by Column from the right-click menu and choose from the fly-out menu to sort Ascending or Descending. If Ascending is chosen, then lesser values will be sorted to the top of the table and greater values to the bottom the table and vice versa if Descending is chosen. This option is available with all Report Styles.

Editing Peaks
To edit peaks, first left single or double-click the cell in the Report Table then right-click to see menu options or use Hot Keys.

Delete Peaks

Right-click the peak cell in the Report Table and select Delete Peaks (Hot Key = DEL). The deleted peak will be removed from the Report Table.

Confirm Peaks

If a peak is given a low-quality score, it will receive a Check (yellow) or Undetermined (red) Quality ranking. To give the peak a Pass (green) Quality ranking, right-click the peak cell and select Confirm Peaks (Hot Key = CTRL+M). The peak will be marked Pass (green).

Peak Information

Hold down CTRL key and click the peak cell of interest. The Allele Peak Info box will appear containing information such as Sample, Dye, Size, Marker, Allele, Score and Comments. The information in these fields cannot be edited. This option is only available with Allele List, Marker Table, and Peak Table Report Styles.

Save Report Table

To save all information currently displayed in the Report Table, click the Save Report icon in the Report Table toolbar. Choose a directory, enter a filename (ProjectName_AlleleReport is the default) and save as an Excel (.xls) or tab-delimited Text (.txt) file.

To export only selected cells in the report table, first select the cells by left-mouse drag across the cell range or hold SHIFT key and select cells. Right-click on the highlighted cells and select Copy (Hot Key = CTRL+C). The information is saved to the Windows clipboard and can be pasted into any common word processor or spreadsheet program like Microsoft Excel. The row and column headers for those cells will be copied with the highlighted cell information.

Menu Options

The following menu options can be found in the menu bar of the Main Analysis window.

File Menu

The File menu contains functions for opening and saving raw and processed data.

Open Data

Launches the Open Data Files window where the user can select raw data files for upload into GeneMarkerHID. Accepted file formats include .fsa, .hid, .scf, .rsd, .esd, .smd, . See Chapter 2 General Procedure.

Open Project

Opens a folder search window where the user can select to open previously saved SoftGenetics GeneMarkerHID project files (.sgf,)

Re-Open Project

Saves the last four projects that were opened by GeneMarkerHID and allows the user to launch any one of those four projects directly.

Save Project

Saves a SoftGenetics GeneMarkerHID project (.sgf) to a specified directory. Raw data files and analyzed data files with edits are saved within a project file. Pull-down peaks may result from changes in optical alignment or polymer of the genetic analyzer. These data are included in the traces of saved GeneMarkerHID Projects (.SGF files).

Close All

Closes a project without exiting the program.
NOTE: It is recommended to select Close All before exiting the program.

Exit

Closes the GeneMarkerHID program.

View Menu

The View menu contains options for how the data is displayed in the Main Analysis window.

Show Navigator/ Gel Image/ Report
Toggles the Sample File Tree, Synthetic Gel Image, or Report Table frames open and closed in the Main Analysis window.

```
Show Navigator
Show Gel Image
Show Report
Preference ...
```


Preference...

Activates the six-tab Preferences box. The Import/Export button at the lower left of the box enables laboratories to Export validated settings and Import the Preferences settings .ini file if all workstations should use the same preferences.

Start up Settings

The Start up Settings tab, effective only at start up, allows you to select the Run Method and General Settings.

Run Method

Classic: Appropriate for experienced users. The user will move through the program data input, settings, and display options without prompting, by simply following the program's sequential analysis flow.
Wizard: Activates the Run Wizard which will guide the user through the program's operation. This setting is best for the inexperienced user.

General Settings

Show Navigator: When selected, the Sample File Tree will automatically be displayed in the Main Analysis window after data processing.
Show Gel Image: When selected, the Synthetic Gel Image will automatically be displayed in the Main Analysis window after data processing. (this is turned off by default and may be displayed automatically by checking the box).
Show Report: When selected, the Report Table will automatically be displayed in the Main Analysis window after data processing. Import Directories: to set a default folder for import of raw data and project files. This option decreases the amount of navigation needed when folder locations are designated for import of data and projects
 Export directory: to set a default folder for export of reports.

Display Settings

The Display Settings tab is used to set how the data is displayed in the electropherograms.

Allele Label

Decimal Precision: Select 0 to 1 decimal places for peak size labeling and font size for allele label. Data frames are read as 10 frames per base pair. Mark Off-Allele as 'OL': Select this option to label alleles that are outside of allele ranges as 'OL'. If unchecked the size will be displayed.
Mark Off-Bin as 'OB': Peaks within a marker range, but outside of a bin will be labeled 'OB'. If unchecked the size will be displayed.
Use Size String for Label: Select this option to label peaks in the electropherograms according to size instead of the allele label. To display a rounded size string, set the Decimal Precision to 0.
Font Size: select the font size of the allele label characters. This increased or decreased font size will carry over to the Print Report.
Flag Variant Alleles in Ladder: Select this option to flag peaks detected in variant allele bins of allelic ladders.
Show All Allele Labels: Will display all allele labels when all dyes are
 displayed in the electropherogram (default unchecked displays allele labels of dye 1 (blue) only when all dyes are overlaid in the electropherogram).

Set Missed Allele as Single Line in Ladder:_Allele labels for missed ladder peaks will be placed one row above allele labels of peaks that were called.
Alternative Label [] for IHO/IHE peaks: A special options for peaks flagged with IHE or IHO. The allele label will appear at the top of the peak, with the user specified flag on a yellow background.

Chart Settings

Max \# of Open Charts: Select the maximum number of samples you would like to display as an electropherogram at one time (Max $=96$). Use the Sample File Tree right-click option Select Max to open the number of samples specified.
Max Chart \# in Page: Select the maximum number of sample electropherograms you would like displayed in the Main Analysis window at one time (Max = 8). Use the Sample File Tree PageUp/Down option to select subsequent groups of samples.
Max Allele Label Layers: Select the number of allele label layers to view at once $(\operatorname{Max}=10)$. This determines how far you must zoom in to clearly read neighboring allele labels and affects how the print report will be displayed.
Show Loci with multiline: Select this option to display the names of all markers above the electropherogram when two or more dyes are displayed.
Show Saturation Alert Line: Displays a red, horizontal line under the X axis in regions where saturation and/or elevated baseline were detected in the raw data
NOT Scale Y Axis for Negative Control: Zooming in and out will not affect Y-axis scaling for samples marked as negative controls.
Show Sample Name: Displays the sample name, as read from the data file, above the electropherogram, in parentheses after the file name.

Peak Label

Choose up to four labels (size, height, area, score) to display as a flag next to individual peaks in the electropherogram.
Position: Choose to place the peak label at either the top of the peak, to the right side of the peak, or in the allele label in the Electropherogram.

Gel Image

Gray for Single Dye: When selected will display and print the gel image with a black background and white bands. When deselected the gel image will display a black background and colored bands (depending on dye color chosen to view).
NOTE: When all dye colors are selected, the bands in the gel image will be displayed in color regardless if this option is selected.
Background in White: Only available when Gray for Single Dye is selected. Will invert the gel image so that the background will be white and the band fragments will be black.

Sample Tree

Flag Low Quality ILS as 'SQ': Samples with low quality Size Standard peaks will be flagged with 'SQ'. See Chapter 4 Fragment Sizing Standards.
Consider Gender for Flag ?: Impacts multiplex chemistries that contain Y-STR marker(s). N

Forensic

The Forensic tab allows the user to determine the display of Ladders and Controls in the Report Table and to establish file labeling conventions for Ladders and Controls.

Show Ladder Samples in Report: When selected, the samples designated as Ladders by the Ladder Identifier field will appear in the Report Table. Select this for export to STRMix software, ensures maximum number of columns.
Show Control Samples in Report: When selected, the samples designated as Positive and Negative Controls by the Positive/Negative Control Identifier fields will appear in the Report Table.
Mark Deleted/Edited Peaks with Symbols: when selected samples that are deleted are marked with an χ at the top of the peak. Samples that were edited are marked with an E at the top of the peak.

Label Peak Ratio: Select from displaying peak ratio from height or area in peak flags when displayed at top of peaks (see Display Settings tab) on the electropherogram

Outline Marker Label if Any Peak is Flagged due to:

Null marker (allows for gender agreement of AMEL and Y-STRs), Red Quality Reason Allele Label Flags, Yellow Quality Reason Allele Label Flags

Ladder Identifier: Enter common filename nomenclature for Ladder samples in the dataset (must be in all capital letters). Upon first analysis, GeneMarkerHID will automatically scan the dataset filenames for the Ladder Identifier values and subsequently label the Ladder samples with an "LD:" and display the sample filename in blue font in the Sample File Tree. Default is "LADDER".
NOTE: The Ladder Identifier option affects the operation of the Auto Select Best Ladder and Automatic Panel Adjustment features in the Run Wizard Additional Settings box. After modifying the Ladder Identifier field, reactivate Run Wizard and proceed through Data Process. The Auto Select Best Ladder and Automatic Panel Adjustment features may now be selected.
Positive Control Identifier: Enter common filename nomenclature for Positive Control samples in the dataset). Upon first analysis, GeneMarkerHID will automatically scan the dataset filenames for the Positive Control Identifier values and subsequently label the Positive Control samples with a "PC1 and PC2:" and display the sample filename in green font in the Sample File Tree.
Negative Control: Enter common filename nomenclature for Negative Control samples in the dataset Upon first analysis, GeneMarkerHID will automatically scan the dataset filenames for the Negative Control Identifier values and subsequently label the Negative Control samples with an "NC:" and display the sample filename in red font in the Sample File Tree. Default is "-NC-".
NOTE: To implement a change in the Identifier fields, right-click any sample in the Sample File Tree and select Set Sample Type Auto Identify. See Chapter 10 Additional Tools - Control Concordance.

Sample Quality

Low ILS Quality 'SQ': Samples with low quality Size Standard peaks will be flagged with 'SQ'. SQ is displayed in the sample name tree, upper left of the electropherogram and in the report table at the right side of the main analysis screen. See Chapter 4 Fragment Sizing Standards.

Quality Sensor Flag " $q S$ " Is designed to provide automated feedback Quality Sensor peaks from chemistries such as Qiagen Investigator ${ }^{\circledR} 24$ plex. Select the appropriate settings based on information from the kit manufacturer and the lab's validation results.

Allele Peak Issues Flag "?" All of the following conditions will result in the file(s) in the sample name tree receiving a ? flag.
Flag sample if Y-STR alleles conflict with gender results of Amelogenin: Impacts multiplex chemistries that contain Y-STR marker(s).

Check any of the following to highlight the marker(s) that fired the flag: Null marker, red allele flag(s), yellow allele flag(s).

Report Settings

The Report Settings tab allows users to select how data is displayed in the Report Table.

Automatically Re-Sort Report: Check this option if you would like GeneMarkerHID to automatically re-sort the report every time you modify alleles. Un-check this feature if you want the report to remain sorted until you choose to re-sort.
Automatically Scroll Charts to Alleles When Selected in Report: You may choose whether to scroll to alleles in the trace when selecting the allele in the report. Leave this feature on to have the software automatically call up alleles in the trace when you double-click on them in the report.
Show Disabled Samples in Report: GeneMarkerHID identifies samples that failed during electrophoresis or size calling. The default setting excludes the disabled samples from the report. The option may be selected to have failed or user-disabled samples to be identified in the report.

Open Multiple Charts When Browsing Report: Double clicking an entry in the allele report table will open a new electropherogram for each new sample selected.
Add Prefix to Saved File Name of Ladders and Controls: Automatically adds the prefix Ladders_ to the allelic ladder file names when saving report, and Controls_ prefix to any samples designated as PC or NC (set in the Forensic Tab of Preferences)
Show LIMS Report Settings Box: Displays the LIMS report settings box when the LIMS Report option is selected from the report table. See Chapter 6 Reports and Printing.

Others

The Others tab has additional selections for the project.
Enable Sample Grouping: When selected, activates the Apply Sample Grouping option under the Project drop-down menu. Deselect Enable Sample Grouping to inactivate the Apply Sample Grouping option. The Apply Sample Grouping information is saved and can be recalled by selecting Enable Sample Grouping. See Chapter 8 Additional Tools - Filename Group Editor. File grouping is especially helpful for review of replicate samples and paternity or family testing trios.

Automatically Save Run Wizard Parameters to INI file:

Automatically saves the Run Wizard parameters in an .ini file when the project is saved. The location is the same location as
 the saved project and the name of this file is the name given to the SaveProjectName_RunWizardParameters.ini.

Export CODIS Settings: Designate the appropriate filter settings per the laboratory SOP to limit the genotypes that are automatically checked for export in the CODIS report (See Chapter 6 Reports and Printing).

Program Data Folders: The default folders are appropriate for many laboratories; enabling the analysts to access and save Panels, Size Standards, Run templates, databases CODIS settings and Positive Control templates. Depending on the IT requirements, the laboratory manager has the flexibility to use the Tools option to designate other locations for these files.

Project Menu

The Project menu contains options for how the data is processed and printed.

Run
Auto Run
Add Samples to Project
Print Report
Apply Sample Grouping
Lyoject Comments
Contamination Check

Run

Activates the Run Wizard and begins the data processing setup. This allows the user to select or adjust program settings in a sequential manner. The same process action can also be accomplished by clicking the Run icon in the toolbar.

Auto Run

GeneMarkerHID will process data using the last set of parameters selected.

Add Samples to Project

The user can add samples to a project that has already been sized and analyzed. When selected, the Open Data Files box will appear. Click Add to select individual files to the project and click OK. The raw data file will be sized and processed with the same settings as the other files in the project and added to the bottom of the Sample File Tree.

Print Report

Selecting Print Report launches the Print Report Settings box which allows the user to define display settings in the Print Report. The software permits printing of the sample electropherograms. You can choose to print all samples, selected samples, or print samples along with the allele table, if desired. See Chapter 6 Reports and Printing.

Project Comments

Allows the user to write free-form comments regarding the analysis. These comments are saved with the project file and can be displayed in the Print Report.

Contamination Check

Select the Contamination Check to compare all samples within a project for:

1. lane - to - lane contamination
2. Contamination from profiles saved to a database (for example, the embedded contamination database containing staff genotypes)

Please see chapter 10, Additional Tools, for detailed instructions on using the contamination check.

Applications Menu

The Applications menu contains individual modules for specific data and analysis types. These modules present advanced features and reporting options necessary for the particular application.

Applications Tools Help
 釉 Export CODIS
 Profile Comparison View
 Relationship Testing
 Mixture Analysis
 Cell Line Authentication

Export CODIS

Developed for forensic scientists analyzing short tandem repeat fragment data. Exports the CMF 3.2 (.xml) and CMF 1.0 (.dat) files for upload into the FBI's CODIS database. See Chapter 6 Reports and Printing.

Profile Comparison View

Allows the user to graphically display any combination of samples and dye colors. This feature includes a 2Dimensional and a 3-Dimensional view of the selected samples.

Relationship Testing

Contains tools for familial search, identifies duplicate samples and potential near relatives from the relationship testing database, provides likelihood ratios for each match; kinship analysis (parent/child, sibs, half-sibs, aunt/uncle, grandparent and cousin) and automated pedigree drawing with deduced genotype of missing parent based on child(ren) and available parent where possible.

Mixture Analysis

GeneMarkerHID identifies the presence of potential mixture samples, designates allele peaks, and calculates peak area or height ratios in the main analysis screen. The Mixture Analysis Application is activated from the Applications menu in the main analysis screen. Mixture analysis identifies the mixture samples and any single source contributor samples in a file name tree, considers all possible allele combinations, calculates the Mixture Ratio, residual score, heterozygous imbalance for each genotype combination, and calculates the likelihood ratio for single source samples that are potential contributors to the mixture, searches database for single source file or a profile deduced from the mixture sample, matches profiles and calculates the LR. Note: The analysis template must have Mixture Analysis checked in the third screen of the run wizard to activate the Mixture Analysis application.

Cell Line Authentication

This application enables users to do a percent match comparison between samples in their current project, and sample genotypes saved in a database (i.e. cell lines), making it ideal for cell line authentication.

Tools Menu

The Tools menu contains the Panel and Size Editors in addition to other helpful modules. Chapter 4 contains details on the Panel Editor and Chapter 5 contians details on the Size Template Editor. Please see Chapter 9 for details of all additional tools.

Panel Editor

Provides a variety of tools to adjust, edit, and create control Panels. See Chapter 5 Panel Editor.

Size Template Editor

Allows the comparison of sample files against a selected size standard, to modify and save the size standard for future use, or create a customized size standard. See Chapter 4 Fragment Sizing Standards.

Tools	Help
II. Panel Editor	
Uize Template Editor	
Positive Control Template Editor	
File Conversion	
Project Comparison	
Pedigree File Name Match	
File Name Group Tool	
Convert Text to Binary Files	
Replicate Comparison	
Output Trace Data ...	
Export Electropherogram ...	
Magic Wizard	
Ehow Last Event	
Sher	

Positive Control Template Editor

This menu enables the user to enter positive control genotypes; making them available in the third screen of the Run Wizard for automated positive control concordance. See Chapters 2 General Procedure and 9 Additional Tools.

File Conversion

This tool allows import of time and distance files from custom genetic analyzers for use with files formatted by the Convert Text to Binary File tool.

Database Manager

This tool allows the user to edit and submit genotypes to the Contamination, Cell Line, and Relationship databases without opening a project. The user may submit genotypes from .txt or .cmf file formats.

Project Comparison

Allows the user to compare the same data set (two different projects) and detect differences based on a number of parameters including peak size and height, quality score, and commented alleles. See Chapter 8 Additional Tools.

Pedigree File Name Match

Allows the user to automatically add additional files to a previously created pedigree tree. A .smp file is exported. See Chapter 8 Relationship Testing.

File Name Group Tool

The Filename Group Tool allows users to define file groups and save the group information as a separate text (.txt) file. A Text (.txt) file is exported. See Chapter 9 Additional Tools. This tool is required for auto-saving and printing pdf files for each sample or group of samples.

Convert Text to Binary Files

For customers developing their own instrumentation, the Convert Text to Binary Files option allows users to upload four or five-color Text files (without headers) for conversion into SCF (four-color data) or SG1 (five-color data) trace files for analysis with GeneMarkerHID. See Chapter 9 Additional Tools.

Replicate Comparison

Many labs choose to run and process multiple replicates of their samples. This ensures that a genotype is still available in cases of contamination, allele drop out, or reaction failure. Concordance between replicates can then be used to export the consensus genotype of the sample.

Validation Assistance

Assistance to determine Analytical Threshold. Export a table with noise peaks (automatically calls noise peaks and does not call data or stutter peaks). Select multiple of std dev and export a table with noise and $X \times$ std dev per dye.

Output Trace Data

Provides the option to output the raw or sized trace data as a TXT or SCF file. Select the samples to include, dye colors, data type, and the directory to output the trace files. See Chapter 9 Additional Tools.

Export Electropherogram

Allows the user to export the trace images to a specified folder.

Magic Wizard Contains three option boxes: Start Your Project, Run and Report.

Start Your Project

Allows the user to easily access the Open Data or Open Project upload windows. The user can also re-open the four previously opened projects by selecting the black arrow next to Open Project.

Run

Start your project

Open Data
酋 Open Project ,

Selecting Run launches the Run Wizard. Selecting AutoRun will process the data automatically with the process options currently selected. See Chapter 2 General Procedure.

Report
Allows the user to Save Project or Print Report. Selecting Print Report will launch the Print Report Settings box. See Chapter 6 Reports and Printing.

Show Last Event

Opens the last active Data Process action.

Help Menu

Help

$$
\text { Help } \quad \text { F1 }
$$

Launches a searchable version of this manual.

User Management
About...

User Management

Allows an administrator to assign access rights to different users. Also used to set up the password protection feature. See Chapter 10 User Management.

About...

Displays information specific to the version of GeneMarkerHID running on the computer. Also contains links to email Technical Support and the SoftGenetics website.

Main Toolbar Icons

Open Data

Opens data input dialog box to begin analysis.

Run Project

Opens Run Wizard for processing the data.

Show/Hide Toggles
Displays or hides the Sample File Tree, Synthetic Gel Image, and Report Table frames, respectively.

Print Report

Provides the user display options for the Print Report.

再- Show Color

Allows the user to select all colors to view, hide all colors, or choose a single dye layer. Choose a single dye by single left mouse clicking on the icon.

Zoom In

Use the icon to zoom in on the image, or hold down the left mouse button and draw a box, from the top left corner to bottom right corner, around the area you wish to zoom in.

Zoom Out

Use the icon to zoom out on the image, or hold down the left mouse button and draw a box, from the bottom right corner to top left corner.

Set Axis

The default setting automatically sets the Y -axis according to the maximum peak intensity of the samples. Two other options are available: auto fit the Y-axis using peak intensities of the alleles, or the user can select the ranges for the X - and Y -axis.

Browse by All Colors

Displays a comparative view of sample electropherograms by dye color. Individual samples can be selected from the drop-down menu.

Allele Call Icons

These icons are only available after the raw data has been processed and the Sample File Tree Allele Call folder is selected.

Size Calibration

Displays calibration charts for linearity of lane analysis.

Show Chart/Table

Toggles display to show only the Peak Table, the Peak Table and Electropherogram, or just the Electropherogram.

Save Peak Table

Exports the Peak Table as an Excel (.xls) file or tab-delimited Text (.txt) file.

Call Allele

Call alleles by sample(s), by marker, or by dyes. Permits slight modifications to the samples without having to activate Run Wizard again. Settings to change include Peak Detection Threshold, Stutter Peak Filter, and Peak Score Threshold.

Marker: D21511 \rightarrow Marker Drop-down Menu

Allows the selection of a marker to view. This is available after the samples have been compared to a Panel.

Event Log

Displays each lane's processing success or failure.

Magic Wizard

Activates the Start Your Project, Run and/or Report dialog boxes.

Report Table Icons

The icons are located directly above the Report Table.

Report Settings

Allows the user to customize Report Table display settings.

Save Report

Exports the Report Table as an Excel (.xls) file or tab-delimited Text (.txt) file.

Bin

Customize Bin Column

Bin Can be used in conjunction with the Bin Table Style Allele Report; research application, allows the user to select which bins to include/exclude in the Report Table.

Additional Analysis Options

In addition to the Main Analysis window, there are two other display options in which the sample data can be viewed: Browse By All Colors and the Profile Comparison View.

Browse By All Colors

Click the Browse by All Colors icon in the Main Analysis window toolbar.

Navigation and peak editing options in the All Color Browser is similar to the Main Analysis window.

To scroll through samples in the All Color Browser, click the dropdown menu in the upper right corner and select a sample from the list. Once a sample is selected in the drop-down menu, you can use the Up/Down Arrow keys to scroll through samples.

Icons and Functions

Dye Selection - Use this icon to remove any dye channel from the view.

Zoom In/Out

Use these icons to increase/decrease the zoom aspect of the electropherograms.

Show/Hide Mouse Cross Lines

When selected, x and y-axis grid lines will appear at the tip of the mouse cursor along with the basepair size and RFU value of the mouse cursor position.

Set Axis

The default setting automatically sets the Y -axis according to the maximum peak intensity of the samples.
Options include:

Select Fixed Y from this drop-down menu to manually select the same Y axis value for all dyes. To manually select a Y axis value for each dye independently, right mouse click on each dye in the profile, select Set Axis \rightarrow Fixed Y and enter the desired Y axis for that dye. Repeat for each channel.

Show/Hide Bin Ranges

When selected, the Bin brackets at the top and bottom of the displayed electropherogram trace will appear.

Auto Scale Markers

When selected, the RFU intensities of low peaks are adjusted to match the intensity of the highest peak in the dye color. When low peaks are increased, the intensity magnification factor is noted in the Marker $(2 X-8 X)$.

Print

Opens the Print Report settings box to print or save the trace display of a single sample from the all color browser with the dye specific Y axis settings

Profile Comparison View

Applications \rightarrow Profile Comparison View
The Profile Comparison View was developed as an easy way to compare several sample traces at once.

Procedure

1. Select several samples from the Sample List by placing a check mark in the empty box to the left of the filename.
2. Click OK
3. The traces will appear in the window to the right.
4. Slide the 2D Offset bar to the right to de-convolute the traces.
5. Select the Line List tab to open the list of traces present in the viewer. Select any trace to bold the trace line.
6. Select a marker from the drop-down list to view one marker at a time.
7. Select Show 3D to see the traces in a three-dimensional view.

Icons and Functions

Dye Color
Single click to scroll through the dye colors - use the drop-down arrow to add or remove dyes from the electropherogram display

Zoom In/Out

Single click to zoom in or out on the center of the Trace View window.

Tools
All viewing options are selected by default. Unselect these options to change the Trace View settings.

Save
Save the Trace View image as a Bitmap (.bmp) file.

Chapter 4 Fragment Sizing Standards

Chapter 4 Fragment Sizing Standards
Size Template Editor
Size Calibration Charts

Size Template Editor

The Size Template Editor is a tool in GeneMarkerHID for creating and modifying Size Standards. To open the Size Template Editor, select Tools \rightarrow Size Template Editor from the menu bar OR click the Size Template Editor icon in the Run Wizard Template Selection box.

Due to differential fragment mobility in capillary gel electrophoresis, a sizing standard must be applied. Each sample run through a CE instrument will contain an Internal Lane Standard (ILS). The ILS contains peaks of known size and is usually tagged with red or orange fluorescent dye. Since the ILS dye-labeled fragments migrate through the same capillary as the other dye-labeled sample fragments, they are subject to the same environmental conditions and can therefore be used as a guide to determine the size of the other fragments in the sample. A Size Standard template is applied to each ILS and sizes between the known ILS peaks are interpolated.
NOTE: GeneMarkerHID is optimized to size fragments with linear mobility. Larger fragments or those run through a high viscosity gel (i.e. agarose) do not migrate linearly and therefore cannot be analyzed with GeneMarkerHID software.

Size Template Editor

Size Standard List
The Size Standard List contains all pre-defined Size Standards and any custom-made Size Standards. Single-left click a Size Standard in the list to select it. The Expected Size Standard trace and Size Table will appear on the right.

Additional Options

To see additional options for each Size Standard, right-click the Size Standard name and the right-click menu will appear with the following options.

Delete Size Standard

Select Delete to delete the Size Standard from the Size Standard List and from the SoftGenetics GeneMarkerHID Size Standard directory.
NOTE: This action is irreversible.
Export Size Standard
Opens the Save As window. Choose a directory folder and click Save. The Size Standard will be copied to the selected directory and will also remain in the Size Standard List and SoftGenetics GeneMarkerHID Size Standard directory. The Size Standard will be exported as an XML file which can be opened with Internet Explorer, Microsoft Excel, or Notepad.

Reload Size Standard

Click Reload to undo editing changes to the Size Standard. The most recently saved Size Standard will be restored.
NOTE: If the user selects Save Size Standard and then answers "NO" to the "Size Standard has been changed, save changes?" the changes will remain in the Expected Size Standard and Size Table until the user chooses Reload or GeneMarkerHID program is closed.

Sample List

The Sample List contains a list of all the samples in the dataset. Double-click the filename and the sample's ILS trace will appear in the Sample ILS frame. Use the Up/Down Arrow keys to scroll through samples in the list.

Expected Size Standard and Size Table

The Expected Size Standard frame displays, as a trace, all the known fragment peaks that are expected to appear in the Sample ILS. Single left-click a green triangle atop a peak to select the peak. The green triangle will turn yellow when the peak is selected.

Additional Options
Once a peak is selected, right-click anywhere in the Expected Size Standard frame. The right-click menu will appear with the following options.

Edit Size

The Edit Size box appears. Adjust parameters and click OK.
Size: Enter the expected basepair size of the ILS fragment.

Comments: Enter free form text regarding the Size.
Enabled: When selected, a "1" will appear in the Expected Size Table. Deselect this option to disable the Size in the Size Standard. The size standard files GS500_1 has disabled the 250 bp fragment as recommended by the manufacture due to differences in migration of this fragment. Disabled sizes will be used for pattern recognition in the sample ILS but will not be used to size fragments in the other dye colors. Disable a Size if its position is variable from sample to sample.
NOTE: If the Enabled value is changed in the Size Table, you must click another cell in the Size Table before saving the Size Standard or the change will not take effect.

Insert Size

Right-click at the position in the Expected Size Standard frame or in the Sample ILS where the Size should be placed. The Edit Size box will appear. GeneMarkerHID will automatically interpolate the value in the Size field if there are two or more Sizes present in the trace. Adjust as necessary and click OK. A green triangle will appear at the cursor position indicating where the new Size was placed.
NOTE: The height of the new Size in the Expected Size Standard trace is dependent on the height of the peak in the corresponding Sample ILS trace.

Delete Size

Select Delete Size to remove the Size completely from the Size Standard. Alternatively, the Size can be disabled by deselecting Enabled in the Edit Size box or by placing a " 0 " in the Enabled column of the Expected Size Table. NOTE: Sizing is often more successful when there are many Sizes in the Size Standard.

Set Value to Column

Makes all values in the column equal to the value in the highlighted cell. Only available in the Expected Size Table.

Sample ILS

The Sample ILS frame displays the selected sample's ILS trace. Click the Show Dye icon in the toolbar to cycle through the other dye colors. Right-click at a peak without a green triangle indicator and choose Insert Size. The Edit Size box will appear. Adjust as necessary and click OK. The green triangle will now appear atop the peak and also in the Expected Size Standard.
Match Score
Appears in the upper right corner of the Sample ILS and corresponds to the degree of pattern match between the sample's ILS and the Size Standard selected. Perfect matches receive a score of 100, no correlation receives a score of 0 .

Navigation in the Sample ILS frame is similar to the navigation options in the Main Analysis window. See Chapter 3 Main Analysis Overview.

Procedure

As mentioned previously, Size Standards are created to assign basepair size information to fragment peaks in a sample ILS. The other dye color fragment peak positions are then interpolated based on a linear size scale from the basepair sizes assigned to the peaks in the ILS. GeneMarkerHID's Size Template Editor tool allows users to apply pre-defined commercial Size Standards or create new custom Size Standards based on the dataset ILSs. Note: GS500_1 is commonly used to accommodate data with artifacts in the low mw range and samples where data collection was ended prior to collecting the largest size fragments: the smallest, largest and 250 bp fragments are disabled.

Pre-defined Size Standards include:

5C120	GS500
ET400-R	GS500_1
ET550-R	HD400
ET900-R	ILS500
GS-100-250	ILS600
GS-75-300	Liz120
GS200	Rox1000
GS350	SEQ_600
GS400	550 (BTO)

Pre-Defined Size Standards
There are two ways to choose a pre-defined Size Standard for the dataset. If the Size Standard name is known, simply single left-click the Size Standard name in the Size Standard List and click OK in Size Template Editor. The selected Size Standard will then appear in the Size Standard field of Run Wizard Template Selection box and will be used to size the data.

Alternatively, if the Size Standard name is not known, follow the Best Match steps below.

1. In Size Template Editor, select BestMatch \rightarrow Match All
2. The Data Processing box appears
3. GeneMarkerHID cycles through all Size Standards
4. Click OK when Data Process is finished
5. The Size Standard with the best average Match Score across all samples in the dataset will be highlighted in the Size Standard List and appear in the Expected Size Standard frame
NOTE: BestMatch will not always choose the correct Size Standard. User inspection is required.
6. Once the Size Standard is chosen, click OK in the Size Template Editor
7. The selected Size Standard will then appear in the Size Standard field of Run Wizard Template Selection box and will be used to size the data.

Custom Size Standard Creation

Follow the steps below to create a new Size Standard based on the dataset currently uploaded to GeneMarkerHID.

1. In Size Template Editor, select File \rightarrow New Size Standard $\underline{O R}$ click the New Size Standard icon
2. The Input Dialog box appears
3. Enter a Size Standard name and click OK
4. The Expected Size Standard frame will be blank
5. Right-click at a known peak in the Sample ILS frame
6. Select Insert Size
7. The Insert Size box appears
8. Enter the basepair size of the peak in the Size field and click OK
9. A green triangle will appear atop the peak in the Sample ILS and a new peak will appear in the Expected Size Standard frame
10. Continue Insert Size operation for the rest of the peaks in the Sample ILS
11. GeneMarkerHID will interpolate Size values after two peaks are added to the Size Standard
NOTE: It is recommended to use the interpolated Size values when creating a Size Standard due to the differential migration patterns of each sample.
12. When the Size Standard is complete, select File \rightarrow Save
 Changes OR click Save Changes icon
13. Click OK in Size Template Editor
14. Proceed with Run Wizard data analysis

Icons and Functions

The following are explanations of menu and icon options in Size Template Editor.

Menu Options

The Size Template Editor contains three menu options - File, BestMatch, and Help. The File menu allows the user to create, save, and export Size Standards. The BestMatch menu contains options for selecting a Size Standard. The Help menu shows navigation hints for Size Template Editor.

File Menu

New Size Standard

Opens the Input Dialog box with a field to enter a new Size Standard name. Follow the steps above - Custom Size Standard Creation.
Delete Current Size Standard
Deletes the Size Standard that is currently highlighted in the Size Standard List

NOTE: This action is irreversible.

Save Changes

Saves edits and changes to the Size Standard in the SoftGenetics GeneMarkerHID Size Standard directory

Save as New Size Standard

Opens the Input Dialog box with a field to enter a new Size Standard name. The Size Standard is added to the Size Standard List and saved in the SoftGenetics GeneMarkerHID Size Standard directory.

Import Size Standard

Opens a Windows Explorer window to the SoftGenetics GeneMarkerHID Size Standard directory. Use the Import Size Standard option to find previously exported Size Standard Files (.xml) on local or networked computers.

Export Size Standard

Exports the currently selected Size Standard in the Size Standard List as an XML file to a specified directory on a local or network computer.

Import ABI Size Standard
Opens a Windows Explorer window to the same folder the sample files were uploaded from.

Export ABI Size Standard

Exports the currently selected Size Standard in the Size Standard List as an XML file to a specified directory on a local or network computer.

Export Project Size Standard

Exports the size standard used to process the current project to the desired folder or directory.

Exit

Closes the Size Standard Editor tool. Be sure to save changes to the Size Standard before exiting.

BestMatch

Match Selected

When selected, the Data Process box appears. Each sample in the dataset is compared to the currently highlighted Size Standard in the Size Standard List. The green triangle indicators are adjusted to give the best match possible.

Match All

When selected, the Data Process box appears. All samples in the dataset are compared to each Size Standard. The Match Scores for each sample are averaged together. The Size Standard with the highest average Match Score for the dataset is chosen as the Best Match.

Help
The Help menu contains a link to Hot Keys in Size Template Editor. Click Hot Keys and the Size Editor Action Help box appears.

Toolbar Icons

Size Template Editor

Found in the Run Wizard Template Selection box or in the Tools menu.

Create New Size Standard

5 Opens the Input Dialog box with a field to enter a new Size Standard name. Allows for the creation of a new Size Standard.

Save Changes

Saves modifications made to the Size Standard to the SoftGenetics GeneMarkerHID Size Standard directory.

Delete

Deletes the Size Standard that is currently highlighted in the Size Standard List.
NOTE: This action is irreversible.

Show Dye

Allows the user to select a single dye color to view in the Sample ILS frame. Cycle through the colors by left-clicking the icon or use the drop-down menu.

Size Match

Automatically places the green size marker triangles atop the peaks of the sample trace and matches it with the selected Size Standard.

What to Expect

Once the Size Standard is created, it can be applied to the dataset. Save the edited Size Standard in Size Template Editor then exit Size Template Editor. If the Size Template Editor was accessed via the Run Wizard Template Selection box icon then the selected Size Standard will appear in the Size Standard field. If the Size Template Editor was accessed via the Tools menu then click the Run Process icon in the Main Analysis toolbar. The Run Wizard will appear. Select the Size Standard from the Size Standard drop-down menu in the Run Wizard Template Selection box. Proceed through the other Run Wizard boxes and click OK when the Data Process window is complete. The Size Standard will be applied.
The success of size calling for each sample is indicated by the green, yellow, and red sheet next to the sample filename in the Sample File Tree of the Main Analysis window. The lane sizing
 quality is determined by the Match Score which in turn is a calculation of how closely the sample's ILS peaks match to the selected Size Standard. If a sample receives a low Match Score, the sample will be marked with a yellow sheet. If the size calling failed (the sample's ILS peaks could not be aligned with the Size Standard selected) then the sample will be marked with a red strike-through. When low score or failed samples occur, select the Size Calibration Charts icon in the main toolbar to correct the size calling.

Low Match Score and Failed Samples

Size Calibration Charts

The Size Calibration Charts tool is designed to aid the user in determining success or failure of size call after GeneMarkerHID's automatic sizing is performed. Click the Size Calibration Charts icon in the main toolbar of the Main Analysis window. As mentioned previously, once a Size Standard has been applied to the dataset, Size Match Score indicators appear next to the filename in the Main Analysis window Sample File Tree. Samples with a high Match Score are indicated by a green sheet; those with a low Match Score have a yellow sheet. Samples where size calling failed receive a red strike-through. To analyze how each individual sample was matched to the Size Standard selected, access the Size Calibration Charts. Within Size Calibration Charts, the user can modify how each sample was sized and view the statistical information for disabled Size Standard peaks.

Sample List

The Sample List includes filename, Match Score, and disabled peak information for each sample in the dataset. Sort the list by single left-clicking the column header. The list will re-sort in ascending or descending order based on the values in the column selected. Single left-click a sample to view its Sample ILS and Calibration Plots on the right
$\underline{\text { OR }}$ use the Up/Down Arrow keys. Right-click the sample row and select Mark as Failed to disable the sample; select Unmark Failed to reverse the action. Disabled samples will appear "greyed-out" in the Sample List.

Score

The Score column displays the sample's Match Score which corresponds to the degree of pattern match between the sample's ILS and the Size Standard selected. Perfect matches receive a score of 100; no correlation receives a score of 0 and the sample is considered to have failed size calling.

Disabled Size Columns

The Sizes that were disabled in the Size Standard (see Size Template Editor section above) will appear as column headers in the Sample List. If no Sizes were disabled then only the Sample Name and Score columns will appear in the Sample List. The basepair size position of the disabled peak is reported for each sample. If the disabled peak is at the beginning or end of the Size Standard, no basepair size position will reported.

Size Calibration Charts

Disabled Size Statistics

If Sizes were disabled in the Size Standard (see previous section - Size Template Editor), then the Disabled Size Statistics table will appear in the bottom left corner of the Size Calibration Charts window. The average basepair position, the standard deviation, and the difference between the maximum and minimum basepair positions across all samples are calculated for each ILS peak matched to the disabled peak's position. No statistics will be calculated for disabled peaks at the beginning or end of the Size Standard.

Size Standard Trace

The Size Standard Trace displays a synthetic trace of the selected Size Standard. Enabled Sizes are red; disabled Sizes are grey. Each peak in the Size Standard Trace represents the expected basepair size of peaks in the sample ILS.

Sample ILS

The Sample ILS displays the currently selected sample's ILS trace. Single left-click samples in the Sample List to see additional samples $\underline{O R}$ use the Up/Down Arrow keys. The green triangle peak indicators appear atop peaks that correspond to the enabled Sizes in the Size Standard Trace. The basepair size associated with the green triangle peak indicator is located above the electropherogram. The peaks selected for size calling can be edited in the Sample ILS frame as described below.
Navigation in the Sample ILS frame is similar to navigation options in the Main Analysis window. See Chapter 3 Main Analysis Overview.

Editing Size Call
Single left-click a green triangle peak indicator to select it. The triangle that is currently selected will be yellow. To move the green triangle, hold down the CTRL key and left-click and drag it to the desired position. Rightclick the green triangle peak indicator or right-click the top of an unmarked peak to see additional options.

Delete Peak

Removes the green triangle peak indicator from the Sample ILS and the peak will not be considered in the Match Score calculation. The Match Score calculation is updated when Update Calibration is selected.

Add Peak

Right-click at the peak position and select Add Peak. A green triangle peak indicator will appear at the cursor position. To move the green triangle, hold down the CTRL key and left-click and drag it to the desired position. The newly added peak will be included in the Match Score calculation. The Match Score calculation is updated when Update Calibration is selected.
NOTE: Add Peak is only available when no other green triangle peak indicator is selected.

Fix Size

When selected, the Calibration Editor box appears. Enter the correct basepair size of the peak and click OK. NOTE: Only Sizes that occur in the selected Size Standard can be entered in the Calibration Editor Size field. The peak will be "fixed" at the specified basepair position and all green triangle peak indicators to the left and right of the "fixed" peak will be adjusted to correctly align with the chosen Size Standard.

The Fix Size feature is useful when the selected Size Standard has uniformly spaced peaks and the sample ILS has additional peaks due to pull-up or other experimental abnormalities thereby influencing the pattern recognition algorithm.

NOTE: Fix Size is not active for manually added peaks or peaks outside the Size Standard range.

Reset Peaks

Select Reset Peaks to eliminate manually added peaks and/or extra green triangle peak indicators after Fix Size.
NOTE: Deleted peaks will not be recalled when Reset Peaks is selected.

Update Calibration

After editing peaks in the Sample ILS, select Update Calibration. The Match Score for the sample will be recalculated based on the edited peak indicator positions. When Size Calibration Charts is closed, the Size Match Score indicators next to the filenames in the Sample File Tree in the Main Analysis window will be updated.

Copy Current Calibration Data

When selected, the frame position and basepair position of the green triangle peak indicators for the selected sample will be copied to the Windows clipboard and can be pasted into a spreadsheet or word processing program such as Microsoft Excel or Word.

Calibration Plots

The Calibration Plots chart the migration linearity of the ILS fragment peaks for each sample. The charts plot the peak basepair positions on the y-axis as a function of time (raw data frame numbers) on the x-axis. As the linearity of the line decreases so does the Match Score for the sample. Incorrectly identified peaks will result in a low Match Score.

Double-click a Calibration Plot to select the sample in the Sample List and display the sample in the Sample ILS. The currently selected sample filename will appear red in the upper left corner of the Calibration Plot.

Procedure

After a Size Standard has been chosen and the data is processed by the Run Wizard, the Size Calibration Charts can be used to correct improperly sized samples.

1. Click the Size Calibration Charts icon in the main toolbar
2. The Calibration Charts window appears
3. Select a sample to edit in the Sample List
4. The sample's ILS appears in the Sample ILS frame
5. Right-click in the Sample ILS frame and chose Add, Delete, or Fix Size to correct size call
6. Right-click again and select Update Calibration
7. The changes will be implemented for the sample and the Match Score will be updated
8. When editing is finished, close Size Calibration Charts
9. The Size Match Score indicators in the Sample File Tree of the Main Analysis window will be updated

Icons and Functions

Toolbar Icons

Size Calibration

Found in the main toolbar of the Main Analysis window.

View Mode

Change the layout of the Calibration Plots frame. Adjust the maximum number of rows and columns displayed. Maximum number of rows and columns is 5 .

Chart Synchronize

When selected, both the Expected Size Standard and Sample ILS traces become synchronized. This option is not selected by default.

Preprocess Raw Data

Select Preprocess Raw Data to smooth the samples' raw data ILS.

Auto Fit Y

Provides the option to automatically fit the Sample ILS's y-axis by the maximum peak height in the trace OR by only the highest matched peaks.

Print

Provides Print Preview and Print of size calibration page, providing a physical record of size calibration for the project.

Save
Allows the user to save the size calibration pages as .png images.

Manual Calibration

Provides the option of manually entering standard peak sizes if many peaks have been modified. This window contains three columns: Standard Size (fragment sizes of standards used for size calling), Peak Position (in frames), and Size (sizes are automatically entered, but easily edited).

What to Expect

It is important to verify sizing accuracy prior to analyzing a dataset. If a sample is not sized correctly, peaks may be called Off Ladder (OL) if a panel is applied. Incorrect sizing most dramatically affects larger size fragments.

Before \& After Editing Size Call

SQ Flagging

SQ ("Size Quality") flagging is an option that may be selected in the Display Settings tab of the View > Preferences menu. When this preference is selected, samples that have low quality size standard peaks will be designated with a red SQ in the main analysis window. Samples that will receive an SQ indicator include:

Samples where some of the size fragment are not detected in the linear range for size calibration:

Samples in which all ILS fragments are detected for pattern recognition and are in the linear range - but one or more of the peaks is of low quality and not called during the allele calling in the main analysis window:

Size calibration indicating the pattern of the ILS fragments is in the linear range

However, if the peak is recognized by the calibration algorithm, but the height does not meet the analysis setting some of the ILS peaks in the example below were not called. The sample is flagged SQ in the file name tree, report table and electropherogram. A pop-up message is displayed with mouse-over in the electropherogram.

SQ flagging provides additional Size Standard information to the analyst. SQ flagging may indicate that the size standard has a linear migration but the resolution of the capillary is questionable.

Chapter 5 Panel Editor

Chapter 5 Panel Editor
Overview
Procedure
Icons and Functions
What to Expect

Overview

The Panel Editor can be accessed from the Tools menu in the Main Analysis window $\underline{O R}$ via the Panel Editor icon in the Run Wizard Template Selection box. The purpose of a Panel is to outline the position of expected alleles. Loci or Markers give a range where a group of alleles is expected to appear and Bins indicate the specific basepair position of the expected allele. In GeneMarkerHID, Markers are indicated by a horizontal gray bar across the top of the electropherogram. Bins are indicated by the dye-colored brackets at the top and bottom of the electropherogram.

NOTE: Only in the Panel Editor do the vertical gray bars within the electropherogram indicate the center of the Bin. For all other views in GeneMarkerHID, the vertical gray bars in the electropherogram indicate the center of the detected peak.

Panel Editor

Project Panel

The Project Panel list includes the template panel used for the project and all allelic ladder samples that fit the pattern recognition to the selected template panel. These ladder file names are in bold font in the main analysis window when Select Best Ladder is used for the Run Wizard. GeneMarkerHID selects the best fit ladder from this list as the reference ladder for each sample in the project. The reference ladder for a given sample is listed on the print report.

Panel Templates

The Panel Template List includes a list of all pre-defined and custom Panels saved to the Panels folder in the SoftGenetics GeneMarkerHID directory. Single left-click on the panel name to display the trace. Single right-click on the Panel name to display the pop-up menu of options. Double-click the Panel name to expand the folder and view the Markers associated with the Panel. Single left-click the Marker name to display that Marker in the Overlay Trace frame.

Rename	F2
Edit ...	
Delete	Del
Export	
Reload	
Set As Project Panel	

Additional Options

To see additional options for each Panel, right-click the Panel name and the right-click menu will appear with the following options.

Edit Panel

Opens the Edit Panel box. Editing the Panel Name field will change how the Panel is labeled in Panel Editor. Set the Ploidy from Monoploid (1) to Decaploid (10) to Unlimited. If the number of peaks within a Marker exceeds the Ploidy setting, the additional peaks will be labeled Off Ladder (OL) and given the Undetermined (red) Quality rank and PL Quality Reasoning. When Unlimited is selected the PL rule is never fired.

Delete Panel
Select Delete (Hot Key = DEL) to delete the Panel from the Panel List and from the
 SoftGenetics GeneMarkerHID directory.
NOTE: This action is irreversible.

Export Panel

Opens the Save As window. Choose a directory folder and click Save. The Panel will be copied to the selected directory and will also remain in the Panel List and SoftGenetics GeneMarkerHID Panel directory. The Panel will be exported as an XML file which can be opened with Internet Explorer, Microsoft Excel, or Notepad.

Reload Panel

Click Reload to undo editing changes to the Panel. The most recently saved Panel will be restored.
NOTE: If the user makes changes to the panel and then answers "NO" to the "The Panel has been changed, save changes to file?" the changes will remain in the Overlay View until the user chooses Reload Panel or GeneMarkerHID program is closed.

Sample List

The Sample List contains all the samples uploaded to GeneMarkerHID in the current project. Samples with a checkmark next to the filename will be displayed in the Overlay View. Double-click the sample filename $\underline{O R}$ rightclick the sample and choose Select/De-Select to enable/disable it in the Overlay View. Right-click any sample in the list and choose Select All/De-Select All to display all or no sample traces in the Overlay View.

Sorting Options

Sample Name

Sorts the samples in alphanumeric descending order. Sample Name sorting is the default option.

Size Score

Sorts the samples by the lane size score as it appears in the Size Calibration Charts (See Chapter 4 Fragment Sizing Standards). Samples with higher scores will appear at the top of the list.

Overlay Trace

The Overlay Trace displays all selected samples in the Sample List. The Marker bars appear above the electropherogram and the Bins appear within the electropherogram as brackets at the top and bottom. The center of the Bin is indicated by the vertical grey bar in the electropherogram (only in Panel Editor). The Overlay Trace view can be changed by clicking the Trace Mode icon in the toolbar. Other options include Max \& Average and Gel Image.

Navigation in the Overlay Trace frame is similar to the navigation options in the Main Analysis window. See Chapter 3 Main Analysis Overview.

Marker Options

Create Marker

Hold down CTRL key and left-click and drag across peaks in the Overlay View. A light-blue hashed box will appear. Right-click in the hashed box and select Create Marker. The Create Marker box appears. Adjust parameters and click OK.

Marker Name: Edit the Marker Name field to change how the Marker will be labeled in the Panel.
Boundary: The basepair range of the Marker is defined by the range of the light-blue hashed box and is therefore inactive in the Create Marker box. To edit the Boundary, see Edit Marker below.

Nucleotide Repeat

Auto Detect: Based on the peaks present in the Overlay View, GeneMarkerHID will attempt to detect the number of nucleotides in each repeat unit of the alleles and place Bins at the appropriate interval.
Set by Manual: Select this option if the number of nucleotides in the allele repeat unit is known and GeneMarkerHID will place Bins at the specified
 interval.

Auto Binning

Fixed Bin Width: Check this option to enter the number of basepairs on the right and left of the center of the Bins. If 0.5 is selected as the Bin Width then the total Bin range will be 1.0 basepairs.
Auto Label: When deselected, the Bins are automatically labeled with the basepair size of the Bin position to the nearest tenth of a basepair. If selected, the basepair size is rounded up to a whole number value.

Marker Specific Settings: Double-click the Marker bar OR right-click the Marker bar and select Edit Marker. The Edit Marker box appears. Adjust parameters and click OK.
NOTE: The Edit Marker box can also be accessed by right-clicking the Marker name in the Panel List and selecting Edit.

Marker Parameters

Marker Name: Edit the Marker Name field to change how the Marker will be labeled in the Panel.
Nucleotide Repeats: Use the Nucleotide Repeats drop-down menu (1-6) or enter a value into the field to set the number of basepairs expected between each allele in the Marker.
Boundary: To move a Marker left or right, hold down SHIFT key and leftclick and drag the Marker bar. To adjust the basepair range over which a Marker is located and stretch the marker, hold down SHIFT key and mouse-over the edge of the Marker bar until a double-headed arrow appears then right-click and drag the Marker edge to increase or decrease the range Additionally, if a Marker needs only slight adjustment to the right or left, right-click the Marker bar and select Adjust Marker. The Marker will move automatically to align with the closest peaks. These boundary adjustments are generally used only by research scientists.

Filtering Parameters

Minimum Intensity(RFU) Filter

Min Homozygote Intensity: Sets the minimum RFU value at which the software will call a peak if it is the only peak in a marker. The number of
 peaks in a marker is determined by the number of peaks above the Min Heterozygote Intensity level.

Min Heterozygote Intensity:

Sets the minimum RFU value at which the software will call peaks if there is more than one peak in a marker. The number of peaks in a marker is determined by the number of peaks above this minimum intensity level.

NOTE: If the minimum homozygous and minimum heterozygous vaues are different from each other, a single peak above the (inconclusive heterozygous) Min Heterozygote Intensity but below Min Homozygote Intensity will be called and labeled with a Check Quality and LO Quality Reason if a second peak is detected above the $N-x$ Stutter Filter value. The second peak will not be called however, because it is below the Min Heterozygote Intensity threshold.

Inconclusive Range (Stochastic Range Flagging):

If desired, set an inconclusive range for homozygous and heterozygous peaks. Peaks within the inconclusive range will be flagged with a Check Quality and IHO (inconclusive homozygous) or IHE (inconclusive heterozygous) Quality Reason. This setting is helpful for flagging peaks that are above the minimum detection level but are not high enough to include in statistics (within the stochastic range).

Max Heterozygote Imbalance flagging:

Uses the percentage of the highest peak in a marker to define the maximum peak threshold. For example, if the threshold is set to 60%, the height of all allele peaks must reach at least 60% of the height of the highest peak in that particular locus. If a peak does not reach that height, it is flagged with a Check Quality and IMB Quality Reason.

Min Heterozygote Imbalance filter:

Uses a percentage of the highest peak in a marker to define the minimum peak threshold. If a peak does not reach the minimum imbalance threshold, the peak will not be called (including stutter peaks). This function is the equivalent to a filter, allowing users to filter out peaks that are less than a given percent of the highest peak within the marker.

Stutter Filter by marker:

Forward and reverse stutter peaks commonly caused by PCR/chemical reactions can be removed using the Stutter Filter. In forensic analysis, the stutter positions of interest are N-4, N-8, and N+4, relative to the highest peaks in the marker (given tetra-nucleotide repeat units). The " x " refers to the number of nucleotide repeats specified in the Marker Parameters - Nucleotide Repeats field. The settings are in percentage of the primary peak. Peaks in the $\mathrm{N}-\mathrm{x}, \mathrm{N}-2 \mathrm{x}, \mathrm{N}+\mathrm{x}, \mathrm{N}-0.5 \mathrm{x}$ and $\mathrm{N}+0.5 \mathrm{x}$ positions that are below the stutter threshold will not be called.

Allele Specific Stutter Filter:

The allele specific stutter filter is activated when Use Allele Specific Values from Panel is selected. The marker stutter values are automatically grayed out. The image below is an example of allele specific settings; D8S1179 N -x position stutter for alleles $7-9.3=8 \%$, alleles $10-12.3=10 \%$ and so on. The $\mathrm{N}+\mathrm{X}$ stutter in this example is set at 2% for all alleles and the $\mathrm{N}+/-0.5$ stutter is not applied).
Allele Specific stutter is additive. If a peak is in a shared stutter position between two other peaks, the stutter peak must exceed the total percent stutter for the flanking alleles before it is called. Peaks that are within the inconclusive range, or are themselves filtered out as stutter will not be used to influence stutter determination of other peaks.

NOTE: The stutter filter is meant to eliminate the extra steps of analyzing peaks caused by instrument anomalies. Set all Stutter Filter settings to " 0% " if all peaks must be called.
Apply Filter to All Markers: When selected, the values in the filtering parameters fields will be applied to all Markers in the Panel. To optimize the stutter filter, set each marker with stutter values determined during your lab validation procedures.
Apply Filter to All Markers within this dye: When selected, the values in the filtering parameter fields for intensity, Max het imb flag and Min Het Imb filter will be applied to all markers in the dye. An alternative to marker specific settings is to apply the settings by dye.

Edit Marker Bins

Right-click the Marker bar and select Update Alleles. The Update Marker Alleles box will appear. Adjust parameters and click OK.

Nucleotide Repeat

Auto Detect: Based on the peaks present in the Overlay View, GeneMarkerHID will attempt to detect the number of nucleotides in each repeat unit of the alleles and place Bins at the appropriate interval.
Set by Manual: Select this option if the number of nucleotides in the allele repeat unit is known and GeneMarkerHID will place Bins at the specified interval.

Auto Binning

Fixed Bin Width: Check this option to enter the number of basepairs on the right and left of the center of the Bins. If 0.5 is selected as the Bin Width then the total Bin range will be 1.0 basepairs.
Auto Label: When deselected, the Bins will be automatically labeled with the basepair size of the Bin position to the nearest tenth of a basepair. If selected, the number will be rounded up to a whole number value.

To associate Bins with a different Marker, hold down CTRL key and leftclick and drag across peaks at the edge of a Marker. A light blue hashed box will appear. Right-click in the hashed box and select Change Marker. The Edit Group Allele box will appear. Select New Marker and a pre-defined name will appear. Use this Marker label or create a new name and click OK. The highlighted Bins are now incorporated into the newly created Marker.

Delete Marker

Right-click the Marker bar and select Delete Marker $\underline{\text { OR }}$ right-click the Marker name in the Panel List and select Delete (Hot Key = DEL).

Bin Options

Create Bin

To create a Bin position, right-click in the electropherogram at the exact position to place the new Bin. Select Insert Allele. The Allele Editor box will appear. Adjust parameters and click OK.

Allele: Enter a name for the Bin. All peaks that appear within the Bin will display this value in the Allele Label in the Main Analysis window.
Size: Indicates the basepair position of the center of the Bin.
Boundary: Indicates the range of the Bin on either side (Left and Right) of the Bin center.
Marker: Select which Marker to associate the Bin with. The Markers to the right and left of the Bin position will be displayed as well as the option to create a new Marker for the Bin. All Bins must be associated with a Marker.
Comments: Free-form text field to associate a comment with the Bin.
Control Gene: Select Control Gene if the Bin contains a major peak in the Ladder samples. Bins marked as Control Gene will display the Allele Label below the Electropherogram trace of the Ladders in the Main Analysis window. Bins marked " 0 " will not display an Allele Label even
 if a peak is present.

Edit Bin

Right-click the vertical grey bar in the center of the Bin in the Overlay Trace. Select Edit Allele and the Allele Editor box appears. Adjust parameters and click OK. See Create Bin section above for explanation of Allele Editor options.
To move a bin, hold down SHIFT key and left-click and drag the vertical grey bar in the center of the Bin to the right or left. Let go of the SHIFT key and mouse button and the Bin will remain in place. To edit the range of a Bin in the Overlay View, click the Trace Mode icon to view the Gel Image. Hold down SHIFT and mouse over the vertical white line of the Bin edge. When a double-headed arrow appears, hold down left-click and drag the Bin edge to adjust the range.

Delete Bin

Right-click the vertical grey bar in the center of the Bin in the Overlay Trace. Select Delete Allele. The Bin will be deleted from the Panel. To delete multiple Bins, hold down CTRL key and left-click and drag across peaks in the Overlay View. A light-blue hashed box will appear. Right-click in the hashed box and select Delete Alleles. The Bins highlighted by the hashed box will be removed from the Panel.

Panel Table

The Panel Table displays Marker and Bin information for the dye color displayed in the Overlay Trace frame. All columns except Dye and Marker can be edited in the Panel Table. Right-click a highlighted cell and select Set Value to Column to make all values in the column equal to the value in the highlighted cell.
Dye
Indicates the dye color of the Bin.
Marker
Indicates which Marker the Bin is contained in.
Size
Indicates the position of the Bin center in basepairs.

Na	On/	Matar	[soe	ILCEA		Nathosel	\|0rand	[Diemeenth	Cumar	$=$
1	5u	0ssis30	1083	05	05	11	0	000		
2	bue	035138	1123	$0{ }^{\text {a }}$	us	12	1	a00		
$\frac{1}{2}$	2m.	0x13s	1164	¢ 5	05	13	1	000		
4	But	006138	1204	25	05	14	1	000		
5	Sum	D351788	124.4	2.5	08	15	1	aw		
E	5	6xil3i	12 c 6	os	${ }^{08}$	152	0	am		
7	sum	0051389	1286	05	05	15	1	000		
8	sue	DS3138	1306	65	05	162	0	000		
9	E.	081388	1329	05	as	17	1	000		
10	en	03513s	1346	05	05	172	10	000		
11	Eun	031388	1370	05	as	${ }^{18}$	1	aw		
12	Ham	D33135	(3)1	05	05	13.	0	000		
13	Sue	0851390	1812	05	05	13	1	0×0		
14	sua	0.5138	1345	05	as	\%	0	000		-

Left/Right Range

Indicates the range of the Bin on either side of the Bin center.

Allele Name

Peaks that appear within the Left/Right Range of the Bin will be labeled with the Allele Name.

Control

Bins marked with a " 1 " are considered major alleles in the Ladder sample and will be marked with an Allele Label and a darkened rectangle to mark the bin in the Main Analysis window. Bins marked with a " 0 " are minor peaks and will not receive an Allele Label, the bin will be marked with a clear rectangle in the Main Analysis window.

NOTE: The designation of 0 and 1 in the Control column is used to assist with pattern recognition in the AutoPanel Adjust algorithm.

Distance/kb

Allows the user to input the distance (in kb) that each allele is from the beginning of the sequence. For example, "38.1" means that the allele is 38.1 kb from the beginning of the sequence.

NOTE: This option is not applicable for forensic STR analysis.

Comments

Free-form text field to associate a comment with the Bin.

Procedure

As mentioned previously, Panels are created to outline the position, in basepairs, of expected peaks. In GeneMarkerHID, the Panels associated with several commercially distributed human identiy kits are included. Examples of some of the pre-defined Panels include Promega's Powerplex kits and ABI's Identifiler and Yfiler kits. GeneMarkerHID also offers the opportunity to create a new custom Panel if the pre-defined Panels do not include a kit that the user is working with. Below is a discussion of how to use the pre-defined Panels or create a new Panel with GeneMarkerHID's Panel Editor tool.

The Panels displayed by default include:

PowerPlex ${ }^{\circledR} 16$	GenePrint ${ }^{\text {® }}$ FFFL
PowerPlex ${ }^{\text {® }}$ S5	GenePrint ${ }^{\circledR}$ CTTv
PowerPlex ${ }^{\text {® }}$ Y	GenePrint ${ }^{\text {® }}$ 24
PowerPlex ${ }^{\circledR}$ Y23PowerPlex ${ }^{\circledR}$ ES	Globalfiler ${ }^{\circledR} \mathrm{AmpF}$ ¢STR ${ }^{\circledR}$ COfiler ${ }^{\circledR}$
PowerPlex ${ }^{\circledR}$ ESX16 and 17	
PowerPlex ${ }^{\circledR}$ EXI16 and 17	AmpFeSTR ${ }^{\circledR}$ MiniFiler ${ }^{\text {TM }}$
PowerPlex ${ }^{\circledR} 18$	AmpFeSTR ${ }^{\circledR}$ Profiler Plus ${ }^{\circledR}$
PowerPlex® 21	AmpFeSTR ${ }^{\text {® }}$ Profiler ${ }^{\text {® }}$
PowerPlex® Fusion 5C and 6C	AmpFeSTR ${ }^{\circledR}$ SEfiler ${ }^{\text {TM }}$
DIPplex®	AmpFlSTR ${ }^{\circledR}$ SGM Plus ${ }^{\text {® }}$
InvestigatorESSPlex ${ }^{\circledR}$	AmpF ${ }^{\text {S }}$ STR ${ }^{\circledR}$ Yfiler ${ }^{\circledR}$
InvestigatorHDPlex ${ }^{\circledR}$	SureID®STRTyper-27Y
Investigator24Plex ${ }^{\circledR}$	

Pre-Defined Panels

The pre-defined Panels appear in the Panel List. Single-click any Panel in the Panel List to select it.
Archived data tool - If the laboratory has panel and bin files from ABI that pre-date the current kits, there is a tool to import Panel and Bin files. In addition to the Panels displayed by default, the user has the option to import standard Panels and Bins Text files. Follow the steps below to import Panels and Bins Text files. Note - stutter values and virtual bin designation must be made in the Panel Editor. Please contact tech_support@softgenetics.com if you require a panel not listed in the pre-loaded panels.

Panels and Bins Files for legacy chemistries

1. In Panel Editor, select File \rightarrow Import ABI Panels from the menu bar.
2. The Import Panels from GeneMapper box appears.
3. Click the access button next to the Panel File field. A Windows Explorer window will appear.
4. Navigate to the location of the Panels.txt file and click Open.
5. Next, click the access button next to the Bins Load from File field and locate the Bins.txt file.
6. Click Open.

NOTE: Select Bins Auto Build if a Bins.txt file does not exist.
7. Click OK in the Import Panels from GeneMapper box.

8. All Panels in the Panels.txt file will be uploaded into GeneMarkerHID.
9. Designate virtual bins by entering a 0 in the control column of the table below the electropherogram.
10. Select a newly uploaded Panel from the Panel List.
11. Edit the Markers and Bins so that they align with the peaks in the dataset.
12. Save the edited Panel and close Panel Editor.
13. Click the Run Project icon in the Main Analysis window.
14. Select the Panel from the Panel field in the Run Wizard Template Selection box.
15. Proceed through Run Wizard and data analysis. See Chapter 2 General Procedure and Chapter 3 Main Analysis Overview.

Custom Panel Creation

Follow the steps below to create a new Panel based on the dataset currently uploaded to GeneMarkerHID.

Automatic Panel Creation

1. In Panel Editor, select File \rightarrow Create New Panel from the menu bar or click the Create New Panel icon.
2. The Create New Panel box appears.
3. Enter a name for the Panel in the Name field. This will be the Panel name that is displayed in the Panel List.
4. The Type will, by default, display the Analysis Type chosen initially in Run Wizard Template Selection. The only option in GeneMarkerHID is HID Analysis Type.
5. Select Automatically Create
a. Use All Samples will create a Panel based on an overlay of all the sample peaks in the dataset
b. Use Selected Samples will create a Panel based only on the samples selected in the Panel Editor Sample List

6. Click the double-arrow button to expand the dialog box and see additional parameters
7. If required, check the Fixed Bin Width option and enter a value for the left and right Bin ranges
8. When finished, click OK
9. The new Panel will be created and added to the Panel List

NOTE: New Panels are created based on the Max \& Average View Mode. More intense peaks are given higher priority for Bin placement when peaks do not overlap perfectly.
10. Edit the Markers and Bins as described in the previous section - Panel Editor Overview.
11. Follow steps 10-14 above.

Manual Panel Creation

In Panel Editor, select File \rightarrow Create New Panel from the menu bar or click the Create New Panel icon.
Enter a Panel name in the Name field
Choose the appropriate Analysis Type from the Type drop-down menu
Select Manually Create
When finished, click OK
The Panel name will appear in the Panel List; however, no Markers or Bins will be associated with the Panel
7. Follow the steps in the previous section - Panel Editor Overview - to create Markers and Bins

Create a Marker in Panel Editor

Adjusting Panels - Manual and Automated Panel

Calibration

It is common for panel alignment to be shifted due to variations in genetic analyzers or run conditions (such as temperature, injection time). Markers or bins can be manually aligned to the allele ladder using the shift and mouse key or the panel can be automatically calibrated using the auto-select best ladder and auto-panel adjust in the third screen of the run wizard (as part of the analysis parameter
 template in Chapter 3).

Align all of the bins within a marker

1. Hold down the shift key
2. At the same time place the mouse over the gray marker name bar at the top of the electropherogram
3. The marker rectangle will be outlined in red and the panel name will be in red font when the adjust feature is active
4. Drag the marker to align the bins with the peaks of the allelic ladder
5. Save the panel to enable the major panel adjust feature to work in future projects

Align an individual bin

1. Select the gray vertical bar of the bin with the mouse - the bar will turn blue
2. Hold down the shift key and click on the gray, vertical bar for the bin
3. The vertical bar will be outlined in red and the panel name will be in red font
4. Use the mouse to drag the gray vertical bar to the center of the peak
5. Save the aligned panel

Options, Functions and Icons

The following are explanations of menu and icon options in Panel Editor.

Menu Options

The Panel Editor contains three menu options - File, Tools, and Help. The File menu allows the user to create, save, and export Panels. The Tools menu contains options for datasets with allelic ladder samples and exporting a Panel. The Help menu contains navigation hints for Panel Editor.

File Menu
Create New Panel
Launches the Create New Panel dialog box with the options to create a new Panel Automatically or Manually

Delete Current Panel/Marker

Deletes the Panel or Marker that is currently highlighted in the Panel List

Save Changes

Saves edits and changes to the Panel in the SoftGenetics GeneMarkerHID Panel directory (Hot Key = CTRL+S)

Save as New Panel

Opens the Input Dialog box with a field to enter a new Panel name. The Panel is added to the Panel List and saved in the SoftGenetics GeneMarkerHID Panel directory.

Import Panels

Opens a Windows Explorer window to the same folder the sample files were uploaded from. Use the Import Panels option to find previously exported Panel Files (.xml) on local or networked computers.

Import Pre-Defined Panels
Opens the SoftGenetics GeneMarkerHID preloaded panels of commonly used commercial chemistries.

Import ABI Panels

Launches the Import Panels from GeneMapper box. Opens Panels and Bins Text files and converts them to single Panel files in XML format for use in GeneMarkerHID. Evaluate (and edit if needed) the panel.xml for appropriate designation of virtual bins, N value, AT and stochastic values and stutter settings.

Export Panel

Exports the currently selected Panel in the Panel List as an XML file to a specified directory on a local or network computer.
Exit
Closes the Panel Editor tool. Be sure to save changes to the Panel before exiting.

Tools Menu

Match Ladder

Opens the Select Ladder box. Choose an allelic ladder sample from the drop-down menu. Click OK and the Panel will adjust slightly to align with the peaks in the selected ladder sample.
NOTE: Large differences between peak and Bin position cannot be resolved with the Match Ladder function.

Virtual Panel

Select a Panel from the Panel List and click Virtual Panel in the Tools menu. The Create Virtual Panel process box will appear. Click OK and a new Panel will be added to the Panel List labeled VPanel_PanelName. This newly created Panel is an adjusted version of the original panel selected in the Panel List. GeneMarkerHID attempts to align the original Panel to the Ladder sample peaks based on an average calculation.
NOTE: It is recommended to use Virtual Panel only when small adjustments to the Marker and Bin placement are required. Use Major Panel Adjustment icon for larger adjustments.

Export the Project Panel

Exports the currently selected Panel in the Panel List as an XML file to a specified directory on a local or network computer.

Help Menu
The Help menu contains a link to Hot Keys in Panel Editor. Click Hot Keys and the Panel Editor Action Help box appears.

Toolbar Icons

Panel Editor

Found in the Run Wizard Template Selection box $\underline{O R}$ the Tools menu.

Create New Panel

Opens the Create New Panel box. Follow the steps in the Create a Custom Panel section above.

Save Changes

Permanently saves Panel edits to the currently opened Panel file which is located in the SoftGenetics GeneMarkerHID Panel directory.

Delete Current Panel/Marker

Deletes whichever Panel or Marker is currently highlighted in the Panel List. This action is irreversible.

Show Dye

Allows the user to select a single dye color to view in the Overlay View. Cycle through the colors by left-clicking on the icon.

Trace Mode

Single left-click to cycle through the options or use the drop-down menu.

Trace Overlay displays all traces of the selected samples in the Samples List one dye color at a time. Single click any trace in the Trace Overlay frame and the trace will become bold and the associated sample will be highlighted in the Sample List.

Max \& Average displays two traces in the electropherogram. The darker color line corresponds to the maximum peak height at that position and the lighter color line corresponds to the average of all selected sample traces at that position.

Gel Image displays selected samples as a synthetic gel image. Bin ranges in the Gel Image mode appear as white vertical lines and can be manipulated by holding down SHIFT and dragging the white lines left or right.

Check Range in Edit When activated, the software will warn the user if they set the left or right range of an allele to overlap with another allele. This feature will prevent the user from setting allele boundaries too close to neighboring alleles. This option is selected by default.

Major Adjustment of Panel To be used when a Panel must be adjusted by 1-5 basepairs in order to align with the dataset peaks. For use only with panels that do not contain variant alleles (0 in the control column)

Minor Adjustment of Panel Aligns the center of the Bin to the center of the nearest peak (within one basepair of the Bin). For use only with panels that do not contain variant alleles (0 in the control column)

Project Panel
Once a panel has been aligned and saved it can be set as the project panel. This panel has signal information and is used to automatically adjust to multiple ladder files in a project. Right click on the panel name in the list of panels and select Set As Project Panel. The panel name will be displayed at the top of the panel list under the heading Project Panel. Exit from the panel editor and the project panel will be applied to the project.

What to Expect

Once a Panel has been created, aligned and saved it can be applied to the dataset. Save the edited Template Panel in Panel Editor then exit the Panel Editor. If the Panel Editor was accessed via the Run Wizard Template Selection box icon, then the selected Panel will appear in the Panel field. If the Panel Editor was accessed via the Tools menu, then click the Run Process icon in the Main Analysis toolbar. The Run Wizard will appear. Select the Panel from the Panel drop-down menu in the Run Wizard Template Selection box. Proceed through the other Run Wizard boxes and click OK when the Data Process window is complete. The Panel will be applied.

The summary bar at the bottom of the main analysis screen displays information about the results. Ladder errors may be flagged with a yellow vertical bar and green allele label to alert the analyst if a non-control, minor peak is higher than expected (figure 1). If any peaks are not in the expected bin they are flagged with red allele labels and red vertical bars (figure 2). The analyst can return to the panel editor to determine if there were problems with the capillary for that particular ladder (figure 3).

Figure 1 Yellow and green flagging alerts the analyst that although the panel is aligned with the ladder bins, some of the minor peaks in this ladder have a higher RFU than expected. This flagging can be turned off using View - Preferences - Display settings uncheck the box to flag peaks detected in virtual bins.

Figure 2 One of the ladder samples in this run has peaks that are out of the bins. These out of bin peaks are flagged with red allele label and red vertical bars

The marker(s) that did not pass the criteria for a passing ladder are dark green. Problematic allele(s) are listed in parentheses above the electropherogram.
Often on full CE runs, there is slight migration variation from beginning to the end of the run. In the following images we see several allelic ladders that migrated more quickly than the others. The auto-panel adjust and auto select best ladder parameters provide the needed minor shift to align bins (including variant or virtual bins). A list of all passing ladders is located in the Project Panle list under the panel Name. Select the allelic ladder from this list to highlight it in the electropherogram and see the bin alignment.

The first two allelic ladders show a migration shift Globalfiler_Panel_GF_ladder1 and ladder 2 (left). When Globalfiler_Panel_H01 is selected from the list the electropherogram displays the aligned bins for this ladder file.

After the Panel is applied to the dataset, the Markers and Bins appear in the Electropherogram and Report Table. In the Electropherogram, the Markers are horizontal grey bars, the Bins appear as dye-colored brackets above and below the trace, and the center of the peaks are marked with a vertical grey bar. Peaks that fall outside of the Markers are marked Off Ladder (OL). Peaks that fall within the marker but outside of a bin are marked OB.

The allele ladder that best matches a sample file is used by the Auto Select Best Ladder in the Run Wizard. The file name of the ladder used for a sample is displayed in the allele report. See Chapter 6 Reports and Printing.

Alternative work flow - Select the desired panel from the drop-down list in the analysis settings to use one panel for all samples in a project. When this workflow is followed, the specified ladder electropherogram will be fixed at the top of the page and the page down key will open the sample electropherograms; allowing easy comparison of the allelic ladder and each sample.

Chapter 6 Reports and Printing

Chapter 6 Reports and Printing
Report Table
Print Report
CODIS Report
Save Project

Report Table

The general features of the Report Table were outlined in Chapter 3 Main Analysis Overview. Here we will discuss and give examples of each Report Style available in the Report Table.

Allele List

The Allele List Report Style displays the basepair size (or Allele Label, if a Panel is applied) of the called peaks. The sample names are listed in rows in the far left column and peaks are numbered in columns at the top of the table.

Features

Report sample by Sample Name or File Name
Show Only Uncertain Alleles
When selected, displays only the peaks with Quality ranks of Check (yellow) and Undetermined (red).

Show Rejected Low Score Alleles

When selected, the peaks with peak scores below the Run Wizard Additional Settings Allele Evaluation Peak Score Reject setting will be displayed in the table.

Hide Extra Sample Names

When data is displayed in Vertical Orientation, the sample names are repeated for each row of data that the sample is associated with. If Hide Extra Sample Names is selected, then the sample name will only appear once in the first of the rows it is associated with.

Forensics

The Forensics Report Style displays the Quality rank and Allele Label of each called peak. Samples are listed in rows in the far left column and Panel Marker names indicate the columns at the top of the table.

Forensics is the default Report Style in GeneMarkerHID. If the user selects a different report style, the program will display this report style the next time the program is opened.

MaSTR ${ }^{\text {TM }}$ and STRMix ${ }^{\text {TM }}$ compatible format:

The settings in the image to the right are used to export tables in a format compatible with STRMix software. Include the allelic ladder to ensure the maximum number of columns are included in each exported table.

NOTE: Forensics requires that a Panel is applied to the data. See Chapter 5 Panel Editor.

Features

Options

Extend Diploid Homozygous: Repeats the same Allele Label in the second allele position of the marker when only one peak is detected in the marker. Only active when the Edit Panel Ploidy option is set to 2-Diploid.

Show Allele Name/Size (0.1bp)/Height/Area: Allele Name is displayed in the Report Table by default regardless of table Orientation. Select to display Size, Height, and/or Area of the peak all within the same cell. Parentheses separate the peak statistics from the Allele Name. Only enabled when Vertical Orientation is selected.
Show File Name check box to display file name column in exported report table.
Show Sample Name check box to display sample name column in exported report table.

Orientation

Horizontal: Sample names appear on the left in rows and Markers appear at the top in columns.
Vertical: Sample names appear in the far left column in rows with Markers listed in the second column. Alleles in order of base pair size appear at the top in columns.
Exclude Sample Index: to exclude consecutive numbering column in exported table

Show ___ w* when no allele call: Allows user to specify a symbol or short word, up to 4 characters, to enter in the cell of the allele report when there is no peak (no
 amplicon) at that marker. If not selected these cells will be empty in the allele report.

Show Only Uncertain Alleles: When selected, displays only the peaks with Quality ranks of Check (yellow) and Undetermined (red).

Show Rejected Low Score Alleles: When selected, the peaks with peak scores below the Run Wizard Additional Settings Allele Evaluation Peak Score Reject setting will be displayed in the table.
Hide Extra Sample Names: When data is displayed in Vertical Orientation, the sample names are repeated for each row of data that the sample is associated with. If Hide Extra Sample Names is selected, then the sample name will only appear once in the first of the rows it is associated with.

Exclude Report Header: Beneficial for import into eDNA and some LIMS systems.

Bin Table

If a peak is detected in at least one sample, the Bin Table Report Style will report the presence or absence of a peak at that position for the rest of the samples in the dataset.

Features

Options

Abide By Panel: When selected, the table will show only called alleles within Panel Marker ranges. This option is only active when a Panel is applied to the data.
Show Type Symbol: Enter values to indicate the presence of a peak at the position (Positive), the absence of a peak at the position (Negative), and a Check or Undetermined Quality rank at the position (Suspected).
Show Intensity (Raw): Displays the peak intensity (RFU) value for all Positive and Suspected peak positions. A " 0 " value is given to Negative positions. Selecting Raw will show the peak intensity values for all positions including Negative positions.

Alisele Repart Sexting	
krowessom	0 otrone Fन̈ Abide By Porel
1-Able in	
\bigcirc formen	10 Shew Type Symed
	Postion 1
Anta	timoxime $\sqrt{0}$
FPreat 1ath	Surpeced 7
	 TV ShenAles Γ Shew Socer
- Stomerielime	
「5hemsminkine	P\% Stow F- Wherito Alstacat
Daerioter	Γ Staw Ony Uneseizan Aler
r Howordi is vetur	
「Exatues Smotinsen	$r-$
F.txchofofiepat Heosto	\bigcirc Stow stucoulsmen
Qk	canod

Show Peak Area: Displays the peak area value for all Positive and Suspected peak positions. Dollar signs " $\$$ " separate values if more than one display option is selected.

Orientation

Horizontal: Sample names appear on the left in rows and Markers appear at the top in columns.
Vertical: Sample names appear in the far-left column in rows. Markers and Alleles, in order of basepair size, appear at the top in columns.

Show Only Uncertain Alleles: When selected, displays only the peaks with Quality ranks of Check (yellow) and Undetermined (red).

Show Rejected Low Score Alleles: When selected, the peaks with peak scores below the Run Wizard Additional Settings Allele Evaluation Peak Score Reject setting will be displayed in the table.

Hide Extra Sample Names: When data is displayed in Vertical Orientation, the sample names are repeated for each row of data that the sample is associated with. If Hide Extra Sample Names is selected, then the sample name will only appear once in the first of the rows it is associated with.

Additional Functions

Allele Editing Options

The Bin Table Report Style offers additional options when a cell in the table is right-clicked.

Insert a Peak at this Bin Site

To indicate the presence of a peak at a position when it has been labeled with a Negative Type Symbol, rightclick the cell and select Insert a Peak at this Bin Site. The Negative Type Symbol will change to a Positive or Suspected Type Symbol depending on the Quality rank of the peak. (Hot Key = INS)

Delete
To indicate the absence of a peak at a position that has been labeled with a Positive or Suspect Type Symbol, right-click the peak cell and select Delete. The Type Symbol will change to Negative. (Hot Key = DEL)

Confirm

To indicate the peak present at the position is truly a peak, right-click the peak cell and select Confirm Peaks. Only peaks centered within a Panel Bin will change from Suspect Type Symbol to Positive Type Symbol when confirmed. Once a peak is confirmed, it cannot be unconfirmed, only deleted. (Hot Key = CTRL+M)

Delete Bin Columns

To completely eliminate an entire column in the Report Table, left-click any cell within the column then rightclick the cell and select Delete Bin Columns. When Vertical Orientation is selected, the Report Table rows which contain the Bin information will be deleted (not the columns which contain the sample information).

Binning Options

To adjust which Bins are displayed and to merge Bins in the Report Table, click the Bin icon in the toolbar of the Report Table. The Report Bin Columns box will appear. Note: Research use only.

Display Bins

By default, all Bins will be selected with a checkmark at the beginning of the row. Individually deselect Bins for exclusion from the Report Table by single left-clicking the checkmark box. To deselect all, rightclick any cell in the Report Bin Columns box and select Uncheck All. To deselect only a few Bins, left-click a cell to highlight the row then hold
CTRL or SHIFT key and select additional rows. Next, right-click and

Fieport in Coumm						Ex
	To	10\%	1 Sose	\mid Rasp	Mater ${ }^{2}$	Vk
V	1	Blic	935	05 05	0331388	
W	2	Bia	St	-05. 15	035138	Crowd
V		梼	ver	10.05	D36138	
V	4	Sive	1048	105.05	036138	
(r)	5.	Bim	1038	1as. 05	035138	
\square	8	Sam	1131	105.a5	088138	
\square	7	Afa	1780	as-as	08130	
V	8	sim	1208	05.05	086130	
\square	3	8 se	123	05.05	DS6130	
\square	\%	sim	1350	0.05 .05	0xims	
${ }^{8}$	11	BH	1220	05.05	D2517e	
4	12	Due	1291	${ }^{05} .05$	pasize	
	13	Dive	1300	04.04	DSS138	
\square	14	Due	1310	0.0.05	Dasise	
	15	owe	1232	-05-05	Dasizs	
\triangle	${ }^{16}$	1 mm	181	85-05	DSTizs	
\square	1	Din	1372	105.05	D3S139	

select Check or Uncheck to include or exclude the Bins, respectively. Click OK in the Report Bin Columns box when finished and only the Bins with checkmarks will be displayed in the Report Table.

Merge Bins

To make two or more Bins become one Bin, single left-click a row to highlight it. Next, hold down SHIFT key to select additional rows. Right-click the highlighted rows and select Merge Bins. (Hot Key = CTRL+M) Click OK in the Report Bin Columns box when finished, and the selected Bins will be averaged together. Only Bins immediately adjacent to one another may be selected for merging. Only the height and area for the first peak in the new merged Bin will be reported.

Peak Table

The Peak Table Report Style displays user-defined peak statistics. Sample names are displayed in the far-left column in rows and the Marker names are in the column adjacent to the sample names. In columns at the top of the table are the selected peak statistic information labels.
The column options available in the Peak Table Report Style are similar to the options available in the Peak Table that appears below the Electropherograms. See Chapter 3 Main Analysis Overview for column option definitions.

Features

Options

Size Range (bps): When selected, allows the user to define a specific basepair range. Only the peaks within the range will be displayed within the Report Table.
Abide By Panel: When selected, the table will show only called alleles within Panel Marker ranges. This option is only active when a Panel is applied to the data.
Grouped by Markers: When selected, alleles within the Marker will be listed one after the other in the columns at the top of the table. When de-selected, each allele will be represented by a row so that the Marker name may be listed several times according to the number of alleles in the Marker. This option is only active when a Panel is applied to the data.

Columns

Click the Columns button to open the Set Peak Table Columns box. All column options are listed in the All Columns field on the left. The columns currently being displayed in the Report Table are listed in the Selected Columns field on the right.

Selecting Columns

Single left-click options in the All Columns field and click the Add button to add the column option to the Selected Columns field. Hold down CTRL or SHIFT key to select multiple options then click Add. Click the Add All button to move all the options in the All Columns field to the Selected Columns field.

De-selecting Columns

Single left-click options in the Selected Columns field and click Remove to move the column option to the All Columns field. Hold down CTRL or SHIFT key to select multiple options then click Remove. Click the Remove
 All button to move all the options in the Selected Columns field to the All Columns field.

Click OK in the Set Peak Table Columns box and the Allele Report Settings box when finished. The options in the Selected Column field will be displayed along the top of the table in columns.

Show Only Uncertain Alleles: When selected, displays only the peaks with Quality ranks of Check (yellow) and Undetermined (red).

Show Rejected Low Score Alleles: When selected, the peaks with peak scores below the Run Wizard Additional Settings Allele Evaluation Peak Score Reject setting will be displayed in the table.

Hide Extra Sample Names: When data is displayed in Vertical Orientation, the sample names are repeated for each row of data that the sample is associated with. If Hide Extra Sample Names is selected, then the sample name will only appear once in the first of the rows it is

	Sample	Marker	Allele\#1		Size\#1	Height\#Area\#1		A1lele\#2		Size\#2	Height\#Axea 2	
1	852_F05.SCF	D21S143.	\square	115	115.1	469	3167		135	135.1	407	3003
		D21511	\square	242	242.3	847	6614					
		D135628	\square	319	318.6	1021	8787	\square	327	327.0	1051	9178
		${ }^{\text {D13s634 }}$	\square	397	397.2	1473	14559		401	401.1	1389	14114
		${ }^{\text {D18S535 }}$	\square	483	482.8	2528	28522					
		${ }^{\text {D18S1002 }}$	\square	120	119.9	605	3714	\square	128	128.1	587	3612
		D185391	\square	178	177.9	1653	11898	\square	182	181.9	1526	11004
		D135742	\square	266	265.7	800	5993	\square	273	273.1	788	6032
		D185386	\square	351	350.8	776	6923	\square	354	354.5	717	6315
		D135305	\square	446	446.2	648	7794	\square		450.3	609	6589
		Ifnar	\square	142	141.9	537	4052	\square	151	150.9	584	4304
		D21S1411	\square	313	312.5	440	3963	\square	325	325.3	383	3335
2	993_F05.SCF	D2151437	\square	118	118.0	4790	39306	\square		125.1	4906	40647
		D21511	\square	224	223.5	6237	51755	\square	228	228.7	5804	47590
		${ }^{\text {D13S628 }}$	\square	283	283.2	4711	35329	\square		286.9	4341	32289
		D1851002	\square	156	156.2	7680	52108	\square	160	160.5	7100	45671
		D135742	\square		256.7	2544	35036					
		D21s1411	\square	278	278.5	4005	30945	\square	282	282.3	3654	28542

Allele Count

The Allele Count Report Style displays the number of alleles present in the Panel Marker. Sample names are listed in rows in the left column and Markers are listed along the top row in columns. A Total Number column lists the number of peaks detected in the sample.
NOTE: Allele Count requires that a Panel is applied to the data. See Chapter 5 Panel Editor.

Features

Orientation

Horizontal: Sample names appear on the left in rows and Markers appear at the top in columns.
Vertical: Markers appear on the left in rows and sample names appear at the top in columns.

Show Rejected Low Score Alleles: When selected, the peaks with peak scores below the Run Wizard Additional Settings Allele Evaluation Peak Score Reject setting will be displayed in the table.

Hide Extra Sample Names: This feature is not active for Allele Count Report Style.

No.	Samples	D185386	D13S305	IIFNAR	D21S1411	Total Numbe
1	051_G03.SCF	2	1	2	1	22
2	052_A04.SCF	2	1	2	2	22
3	052_B04.SCF	2	1	2	2	22
4	052_H03.SCF	0	0	2	2	16
5	061_B05.SCF	2	2	2	2	23
6	062_C05.SCF	2	2	2	2	21
7	063_D05.SCF	2	2	1	1	21
8	064_E05.SCF	2	1	1	2	20
9	065_F05.SCF	1	2	2	2	22
10	066_G05.SCF	2	2	2	2	23
11	067_H05. SCF	2	2	2	2	21
12	068_A06.SCF	2	2	1	2	21
13	069_B06.SCF	2	2	1	2	23
14	539_H05.SCF	2	1	2	3	23

LIMS Report

The LIMS report is a specialized functioned designed for LIMS exporting compatibility. Access the LIMS report settings by clicking the triangle icon to the right of the save icon, and then selecting Save LIMS Report.

If the View > Preference setting "Show LIMS Report Settings Box" is turned off, the LIMS settings window will be hidden, allowing the user to save the LIMS report without modifying the contents of the report.

Report 退 [10 Bin								
	Sample	Save Report						1ele\#
1	SQ:PAT_	-	Save	LIMS Repot				13
2	SQ:PAT_L	-	-1-39	-	-			32.2
3	SQ:PAT_1	10_C	1.fss	D7S820	\square	10		12
4	SQ:PAT_1	10_C	1.fss	CSF1po		11		12

Dyes: Select the dye colors to be included in the report.
Sample Name or File Name: Have samples labeled by their external file name, or their internal sample name.

Show Deleted Peaks: Include deleted peaks in the report.
Show [**] When No Allele Call: If no allele calls are present at a specified marker for a given sample, the program will print **. If this option is deselected, the marker will be skipped for that sample instead. Note that you can type a symbol other than ${ }^{* *}$, for example "NA", or "None".

LIMS Report Settings	\times
Dyes $\nabla \nabla$ ∇ Blue ∇ ∇ Purple ∇ Green ∇ ∇ Orange ∇ Redow	Options Size Rangelbps) From \qquad 5 Abide By Panel
\sqrt{V} Show File Name Γ Show Sample Name	Columns...
\checkmark Show Deleted Peaks	\sqrt{V} Show $\sqrt{* x}$ when no allele call
Γ Hide Extra Sample Names	Γ Show Only Uncertain Alleles
Γ Exclude Report Header	\checkmark Show Rejected Low Score Alleles
Ok	Cancel

Show Only Uncertain Alleles: Only alleles with red or yellow flagging (i.e. they are in the "check" or "fail" range for at least one parameter) will be exported in the report.

Size Range: Only include allele from the specified size range, otherwise use the default size range.
Abide by Panel: Only include peaks that are present in the project Genotyping panel.
Grouped by Marker: If Marker is selected from the Columns list (see below), markers from all samples will be grouped together.

Columns...: Select which values to include in the report. Click on an item and then click "Add". Items in the right window are included in the report, items in the left window are excluded. Items will be displayed according to the order in which they have been added.

Show Rejected Low Score Alleles: Alleles that were rejected because of low score will be included in the report.
Hide Extra Sample Names: The sample name will be displayed for each sample only once, instead of appearing on every row.

Print Report

The GeneMarkerHID Print Report displays Electropherogram and/or Peak Table information for all or selected samples in a dataset. To access the Print Report, go to Project \rightarrow Print Report OR click the Print Report icon in the Main Analysis window. The Print Report options box will appear. Select desired settings and click Preview to view the Print Report before printing or click OK to begin printing without previewing the report. The reference ladder (best match) used for each sample and the run date and time for the sample are listed in the first line for each given sample.

NOTE: The View \rightarrow Preference \rightarrow Display Settings options will affect how the Print Report is displayed.

GeneMarkerHID Print Report

Report Content Options

The basic printing options allow the user to choose the Print Type, Samples to print, Dyes to include, and Content options. Each electropherogram will be automatically labeled with its respective sample file name in the printed report. The user may also save commonly used print settings as templates. Simply select the desired options, type a Template Name, and then click the save button. Clicking a template will load that template's settings. Standard options can be found under the Standard tab, advanced options under the Advanced tab, and page settings may be found under the Page tab.

The Standard Tab:

Print Type
Normal: All Print Report options are available when Normal Print Type is selected.
Chart Overlay: Prints only the Electropherogram with the report.

Samples

All Samples: Prints all the samples in the project.
Selected Samples: Prints only those sample files that have been selected in the Main Analysis window Sample File Tree.

Contents

Electropherogram: Prints the peak trace for each dye color and sample selected.
NOTE: The zoom setting of the Electropherogram in the Main Analysis window will be represented in the Print Report. Zoom out fully to include all peaks in the Print Report.

Peak Table

Peak Table: Prints the Peak Table for each dye color.
Follow Trace Chart: The peak table for each dye channel will directly follow that dye channel's trace.
Start after All Charts Finished: The opposite of the above option - the peak table for each sample will begin below every trace.
Start on Separate Page: The peak table will begin after every trace, but will always start on a new page.
NOTE: If neither Electropherogram nor Peak Table were selected, the Print Report will contain a list of each dye color selected for each sample selected and the allele count within each dye color. Forensic Table: Prints the allele calls (genotype) table on the final report

Dyes

Dye 1-6: Click the checkbox to include the dye color in the Print Report.
Mix Dyes: Prints all selected dye colors on one electropherogram.
Hide Bins: uncheck this box to remove the bin markers from the X axis of electropherograms in the print report

Abstract

Advanced Tab

Print Project Comments: Includes the Project Comments at the top of the Print Report. Select Each Page option to display the Project Comments on each page in the report. Select Word Wrap to engage word wrapping.

Print Report Header: Includes Institution and User ID from User Management and Template, Panel Name, from the Analysis Template. Select On Each Page to include the header on each page.

Label Dyes \& Peak Numbers: Labels dye color with number of peaks for each electropherogram.

File Name: Labels the file name for each electropherogram.
Sample Name: Labels the sample name for each electropherogram.

Print Markers: The Marker label bars appear above the electropherogram.
Abide by Panel: Prints only alleles within a Panel. Alleles that are outside the Panel are not included in the printed report.

Auto Scale Markers When selected, the RFU intensities of low peaks are adjusted to match the intensity of the highest peak in the dye color. When low peaks are increased, the intensity magnification factor is noted in the Marker (2X -8 X).

Print Alleles: The Allele Labels appear below the electropherogram.
Print Edited Peak Only: Only peaks that have been edited are included in the peak table.
Mark Deleted/Edited Peaks: Prints an x above a deleted peak and an E above an edited peak in the electropherogram.

Grouped by Dye: Organizes the electropherograms in the Print Report such that samples are listed in order of dye color selected i.e. all samples in blue first, then all samples in green, etc. (often used in combination with Print Samples with Grouping option).

New Page for Each Sample: Prints a new page for each sample instead of continuing on the same page as the previous sample (not available if Grouped by Dye is selected).

Implement Y Axis Settings: Prints the report using the Y-axis settings the user selected in the Main Analysis window Set Axis icon.

Print Samples with Grouping: print and/or save samples by group when the grouping tool is applied in the main analysis window. To save a pdf file for each sample: apply sample grouping in main analysis screen, make each sample its own 'group', select print samples with grouping in the print options. When saving, select Save Group Samples as one file.

Label Peak Ratio: Select this option to print the peak ratios on the electropherogram of the print report (available when the View - Preferences - Display Settings is selected for peak top).

Chart Height: Use this feature to customize the size of the electropherogram in the print report.

The Page Tab

Size Type: Select the desired document format from the dropdown menu. The width(mm) and height(mm) of the selection will be displayed below. Selecting custom will enable the user to manually input the height and width of the document.

Margin(mm): Input the desired margins for the document. Distance is measured from the respective page border.

Orientation: Select either Portrait (vertical) or Landscape (horizontal).

Creating a New Template and Editing Existing Templates

To create a new print template, simply input a name in the
 "Template Name field" and then click the Save button at the
bottom－center of the Print Report window．The template saves the current settings in all three tabs－allowing the user to make their specifications once，and then save them for future use．

To update an existing template，simply select the template，make the settings change（s），and then click the Save icon．The template will be immediately updated．

To delete an existing template，select the template，then click the Delete button．

Print Preview：

Click the print preview button to see a preview of the print report prior to printing or saving it．Once in the print preview you can easily re－open the settings window－allowing the user to experiment with different display options and immediately see updates in the print report．The icons and functions of the print preview are described in more detail below．

Include Customizable Logo in the Print Report

GeneMarkerHID allows the user to include a customizable logo in print reports generated from the main analysis screen．The steps for doing this as are follows：

1．Save your lab＇s logo image file using one of the following image formats：．jpg，．jpeg，．bmp，．ico，．emf，or ．wmf（Note：．png is NOT permitted）．
2．Move the file to the following directory：
C：\program files（x86）\SoftGenetics \backslash GeneMarkerHID $\backslash[$ your version number $] \backslash$
3．Rename the file＂PartnerLogo＂（no space）．

				－$\square^{\text {a }}$
Organize ${ }^{\text {－}}$	－Print Burn		啡	－ 7 团
$\begin{aligned} & \text { Favorites } \\ & \text { ED Desktop } \\ & \text { D Downloads } \\ & \text { \& Dropbox } \\ & \text { Recent Places } \end{aligned}$	Name	Date modified	Type	Size
	缚 GeneMarker＿HID	5／9／2014 10：53 AM	Application	9，593 KB
	GeneMarker＿HID	7／18／2006 6：13 PM	Configuration Sett．．．	1 KB
	－GeneMarker＿HID	5／9／2014 3：46 PM	Text Document	1 KB
	e HotKey	1／12／2005 5：51 PM	Firefox HTML Doc．．．	8 KB
	－InSTALL	5／9／20149：34 AM	Text Document	28 KB
司 LibrariesDocumentsMusicPicturesVideos	2883 libhpdf．dll	7／5／2013 7：02 PM	Application extens．．．	768 KB
	（8）MutPoolDIIIdII	12／28／2013 2：26 PM	Application extens．．．	258 KB
	E PartnerLogo	5／9／2014 3：29 PM	JPEG image	41 kB
	8）PdfTransferLibrary．dll	8／2／2013 4：38 PM	Application extens．．．	$3,980 \mathrm{~KB}$
	蜨 PED＿Filename	1／10／2008 5：10 PM	Application	1，027 KB
	as Plecostomus	11／25／2013 1：46 PM	Application	452 KB
（1）Computer	－PositiveControls	5／9／2014 3：46 PM	Configuration Sett．．．	2 KB
蒌 Local Disk（C：）	－PrintTemplates	5／9／2014 3：13 PM	Configuration Sett．．．	1 KB
	2 Read me	5／9／2014 4：42 AM	Adobe Acrobat D．．．	275 KB
$4{ }_{4}$ Network	－RegAsm	3／18／2010 1：16 PM	Application	51 KB
	－\square	III	$\underline{\square}$	$\square 1$
GeneMarker＂HID hentan loanty Sothare		Date taken：11／20／2010 4：40 PM		

After completing the above steps，your logo will appear on all print reports generated from the main analysis window．For best results，use images that are rectangular．To disable the logo，simply delete the PartnerLogo file， or name it something other than＂PartnerLogo＂．

Icons and Functions

The following icons are available in the Print Preview window prior to printing the Print Report.

Print
Opens the Print options box. Select a printer, the print range and the number of copies.

Export to File
Opens the Export Report to Files box. Save each page of the Print Report as an individual image file JPEG, PNG or PDF. Select the directory to export the files to. When saving as a group the file name will be the first file of the group. See View- Preferences Report Settings if a prefix of Ladders and Controls is desired for allelic ladder, positive and negative control files. Note: to save individual files

as separate PDFs, use sample grouping tool to make each file its own 'group' and then select Save Group Samples as One File. To save paternity trios, group samples by family, include the print option to Group by dye and print samples with grouping.

Named by sample name saves each PNG or JPEG under the sample name.

Start by Page Number combines the page number and the sample name for the saved file name.

-6.Pg10_C07_05.jpg	JPEG Image
*-Pg11_C07_05_01.jpg	JPEG Image
- Pg12_C08_06.jpg	JPEG Image

Save Group samples as one file names the file with the file name of the first sample in the group.

Named by file name saves each file by the file name.

Named by page number saves each file by the page number within the report.

Page Setup

Opens the Page Setup box. Choose the paper size, margins and orientation (Portrait or Landscape).

Content Options

Opens the Print Report options box. See the section above - Report Content Options.

Zoom to Fit

Zooms out to view the entire Print Preview page.

Zoom to Width

Zooms in to view the Print Preview page at maximum width without losing information off the screen.

Zoom Ratio

Enter percentage numbers to increase or decrease the zoom aspect of the Print Preview page.

CODIS Report
 Tools \rightarrow Export CODIS

The CODIS Report feature allows users to create an exportable report file for easy input into the CODIS database.

The CODIS Export window will appear with several options for modifying the header and classifying the samples. To change the classification information for the samples simply click the cell you wish to modify and select from the options in the drop-down menu.
Once you've updated the information click OK and the option to save the CODIS file will appear. Select a location and save as either a CMF1.0 (.dat) file, CMF3.0 (xml) or CMF3.2 $(. \mathrm{xml}$) [As per US DOJ

CODIS Interface Specification（CMF 3．0）CONTRACT NO．ITOP 97－0087 Sub Task Order 26CODIS and Interface Specification（CMF 3．2）Revision 14

Save Project

After a dataset is analyzed and edited，the project can be saved as a SoftGenetics GeneMarkerHID Project（SGF）． Project files contain the raw，unprocessed data files，the sample files after processing，the process parameters，and all edits．The project file does not contain any custom or modified Panels or Size Standards．To export a custom Panel，see Chapter 5 Panel Editor．To export a custom Size Standard，see Chapter 4 Fragment Sizing Standards．

To save a project，go to File \rightarrow Save Project in the Main Analysis window．The Save Project box will open．Select a directory and enter a project name．Click Save．
To re－open the project，go to File \rightarrow Open Project in the Main Analysis window．The last folder accessed by GeneMarkerHID will appear．Navigate to the directory containing the SGF（or SFP）file and click Open． Additionally，the last four projects that were opened by GeneMarkerHID appear when the File \rightarrow Reopen Project fly－out menu is selected．Click a project from the fly－out menu and it will be uploaded to GeneMarkerHID．

Save Selected Samples

This icon saves the currently selected samples，those with a check mark next to the file name in the file name tree．This option is enables labs to provide a project file with only the samples pertinent to a case when discovery is requested．

```
File View Project Applicati
% Open Data
_⿴囗⿱一一⿴囗⿱一一夊刂
    Reopen Project *
    Save Project
Save Selected Samples
    Close All
    Exit
```


Chapter 7 Mixture Analysis

Chapter 7 Mixture Analysis

Overview
Procedure
Icons and Functions
What to Expect
Save and Export Results
Search Database
Mixture Analysis Equations

Overview

Mixture analysis is required for many samples that are not single source, as in the case of some crime scene and missing persons and unidentified human remains applications. The mixture analysis application was developed using recommendations of the DNA commission of the International Society of Forensic Genetics (Gill et al., 2006) and methods of Clayton et al., 1998 and Gill et al., 1998. GeneMarkerHID mixture analysis follows the steps involved in the interpretation of STR mixture data (Clayton et al. 1998).
> Identify the Presence of a Mixture
> Designate Allele Peaks
$>$ Identify the number of potential contributors
$>$ Estimate the relative ratio of the individuals contributing to the mixture
$>$ Consider all possible allele combinations
> Compare References Samples
GeneMarkerHID identifies the presence of potential mixture samples, designates allele peaks, and calculates peak area or height ratios in the main analysis screen. The Mixture Analysis Application is activated from the Applications menu in the main analysis screen. Mixture analysis identifies the mixture samples and any single source contributor samples in a file name tree, considers all possible allele combinations, calculates the Mixture Ratio, residual score, heterozygous imbalance for each genotype combination, and calculates the likelihood ratio for single source samples that are potential contributors to the mixture. Often, as in the case of male/female cell separation, a single major contributor profile of the perpetrator can be identified in the results table. This genotype can be exported directly to the Relationship Testing database in GeneMarker to search for exact matches or close relatives, even in cases where there is no suspect reference sample. LR calculations are displayed for two contributor mixtures. MaSTR ${ }^{\text {TM }}$ Software is available for probabilistic statistics calculated for mixtures of 3-5 contributors

Procedure

Identify the Presence of a Mixture

The presence of a mixture is determined by setting the needed parameters in the third plate of the Run Wizard. The criteria are used for identifying potential mixtures include: presence of more than two peaks in for a marker, severe peak height imbalance between alleles of a locus (also see Panel Editor, stutter peak filter, chapter 5), and apparent stutter product above the normally expected range.

1. From the Main Analysis Screen select File \rightarrow Open data or Open project \rightarrow Add \rightarrow Okay
2. Launch Run Wizard from pop-up menu or from Project drop-down menu
3. Select Appropriate Template and Run Parameters (see chapter 3)
4. Select Mixture Analysis in third screen of the Run Wizard
5. Enter desired values for Valid Mixture Peak Percentage and Min Number of Peaks/Marker (3 is appropriate for a mixture from two contributors)
6. Review allele calls and summary information

Review Results

1. Ladder and controls are automatically identified based on nomenclature specified in View \rightarrow Preferences \rightarrow Forensic
2. Action summary presented at the bottom of the screen indicates number of samples, automated positive and negative control concordance, ladder flagging (see chapter 5 Panel Editor), number of samples failed and flagged (caused rule firing).
3. Samples that meet the mixture criteria are identified as potential mixture - MX:

Mixture Analysis

1. Select Applications \rightarrow Mixture Analysis
2. Launch Mixture Analysis Settings

* Analysis Type - Peak Height or Area
* Minimum HIM: heterozygous imbalance minimum is on a sliding scale dependent on the Range - Right click to edit Min. HIM parameters
* Maximum Residual - "...we infer that the
 likelihood of the peak areas given the combination of genotypes is high if the residual is low." (P. Gill et al. 1998) is calculated as

$$
\sum(\text { pa observed - pa expected })^{2}
$$

using peak areas and mean Mx to compare the observed proportions to the expected proportions.

* Minimum Major Weight parameter allows selection of potential combinations based on the Mixture Proportion (Mx)
* Set minimum stutter ratio and drop-out intensity. In cases where a valid allele combination would result with allele drop out, a Q is used to represent a possible unamplified allele. The value set in the parameter for allele drop out is used in the HIM and Mx calculations. For example if the genotype of a mixture is $11,12,13$ and the intensities are 1000, 1000 and 200 one of the valid combinations could be 11,12 and $13, \mathrm{Q}$. In this case the Major Mx is $(1000+1000) /(1000+1000+200+100)$ and the minor HIM is $100 / 200$ or 0.5 . But if the intensity of 13 was less than 100 the intensity of the drop-out peak would be set at the same intensity as 13.
* Contributor detection threshold allows for possible contributor when there is an incomplete profile.
* Preloaded Allele frequency values are the same as those described in Chapter 8 Relationship Testing. The edit icon allows individuals with access right approval to easy add or remove other population allele frequency .txt tab delimited tables (see chapter 8 for file format template) Allele Frequency Tables

Allele frequency tables for major US populations may be selected from the drop-down menus in the Select Allele Frequency Settings box. If results of all populations are preferred, select the Use all Populations box and the final report will append with the results using each of the tables sequentially. The Delete button may be used by individuals with access rights to remove any population frequency tables that are not needed by the laboratory. Use the Open folder icon to import formatted allele frequency tables for other populations.
*

* Skip Unmatched Markers in Cumulative LR calculation allows for LR calculation in the cases of incomplete profiles.
* Overlay - when Show Invalid Combinations is selected all possible genotype combinations are displayed in the results table. Red font indicates that the combination did not meet the analysis parameters. Black font indicates that the genotype combination meets the analysis parameters. If this option is de-selected
only the combinations that met the analysis parameters are displayed in the result table.
* Report - Save Parameters when Saving Report - creates an .ini file with the same name as the report; providing verification of mixture analysis parameters used to generate each report.

Mixture Analysis Results

Mixture Calculations Results

File Name Tree
Trace or Report Display Option

The file name tree in mixture analysis groups files by the number of contributors. When a file under 'Two Contributors' is selected, any single source samples from the project that are potential contributors to the mixture are displayed underneath the mixture sample file name. Contributor file names are automatically listed in the dropdown menu at the bottom of the screen and peak ratio results are used to determine if the profile is a major or minor contributor.

Mixture calculation results are displayed in the results table. All possible allele combinations are displayed, along with the major Mx ratio, residual score, and major and minor heterozygous imbalance ratios. Please see Mixture Analysis Equations section at the end of this chapter for mixture analysis equations. Allele combinations that meet all of the mixture analysis parameters are in black font, other combinations are in red font.

The Report table on the right side of the mixture analysis screen lists:

1. Marker Name (AMEL and Y markers are not included in LR calculations)
2. Alleles called in the mixture
3. Probability of Inclusion (PI) and Probability of Exclusion (PE) for any selected mixture sample (two contributors or three or more contributors)
4. Genotypes of contributors
5. Likelihood ratio for selected contributors
6. Combined Probability of Inclusion (CPI)
7. Combined Probability of Exclusion (CPE)

The analysis should record the hypothesis being tested and any other notes on the analysis in the comments section. When the result table is copy/pasted or exported as .txt files the comments are automatically saved with the report table, providing more efficient accountability and presentation of results.

What to Expect Mixture Analysis and Database Search

With Reference File(s)

The File Name Tree indicates that two single source files are potential contributors to the evidence mixture. The analyst may select a potential contributor file from the drop-down menu at the bottom of the report. The genotypes combinations and ratio results are displayed in the result table. The Report table at the right of the screen provides the LR for each marker. The Combined LR is displayed at the bottom of the screen. The combined LR is the likelihood that this individual contributed to the mixture versus a random person from the population contributed to the mixture. Use the Trace Data to toggle from the LR report to the traces. Use the Show all combinations toggle to display either all genotypes; black font for combinations that conform to all of the mixture analysis parameters and red font the combinations that do not conform with the mixture analysis parameters OR toggle to display only the black font.

Submit a reference profile to the Relationship Testing Database
A profile from a reference sample can be submitted directly to the Relationship Testing Database from this mixture analysis screen.

1. Use the Submit Genotypes to Database icon

2. Select the appropriate file(s)
3. Submit
4. OK

Search Relationship Testing Database for exact matches

1. Use the Search Database icon to search the database for exact matches
2. Select the desired profile from the drop-down menu

3. File name(s) of matching profiles will be added to the drop-down menu
4. LR s are displayed in the Report Table

Before search database icon the drop-down list has only the single source reference files listed

After Selecting the profile to search the database, all files that match are displayed in the drop-down menu

Select the file to display the LR results in the Report Table

What to Expect

Without a Reference File

In some cases, only the mixture sample and the victim reference sample are available. For example, DNA isolation from rape cases often has successful male/female cell separation that provides a mixture where the perpetrator is the major contributor and the victim is the minor
 contributor. Results shown in the following figure allow the analyst to identify a single profile that corresponds to the perpetrator in the Major Contributor column. This profile can be used to:

1. Search the database in GeneMarker for an exact match or match right from the mixture analysis screen
2. Search for potential relative (see Chapter 8 section Data Base Search: Finding Nearest Relatives)
3. Save and export for use with external database searches.

Submit a profile from deconvolution of mixture sample to the Relationship Testing Database

1. Toggle to display only the allele combinations that conform to the mixture analysis parameters
2. Review to confirm that a single profile has resulted for the major contributor
3. Select Submit Major, Submit and OK NOTE: Please back up the Database file on a regular basis.
(2) GeneDB, mdb
(1) GeneMarker_HID.mdb

E4. GeneDB.ldb
[2] GeneMarker_HID.ldb

1. Use the Search Database icon to search the database for exact matches
2. Select the desired profile from the drop-down menu
3. File name(s) of matching profiles will be added to the drop-down menu
4. LR s are displayed in the Report Table

Before using the search database icon, the drop-down list has only the single source reference files listed

After selecting the profile to search the database, all files that match are displayed in the drop-down menu. These results indicate that there is an individual XYZ in the database that matches the major contributor in this mixture, in addition to the de-convolution profile from the mixture sample.

Select the file to display the LR results in the Report Table

Files can be saved in CODIS format by using the Export CODIS icon from the Genetic Database Editor

Hypothesis Testing Options

To calculate likelihood ratios from a comparison of the null hypothesis to alternate hypotheses, the analyst should select contributor 1 and contributor 2 from the drop-down menus at the bottom of the analysis screen. Check the appropriate box(es) under the Contested heading to

$\begin{aligned} & \text { fie } \\ & \text { an } \\ & \hline 10 \end{aligned}$			
		Smantism	Homeme
vecoritace		(1)	
17 . Fe9		(eat	
-		Patcos	
-		(mat	
Sem them			
Smodiome		Patat	
rimeen - ameme			
		OEnL3ol_MoF Fu5 Hal	

contest contributor 1 or contest contributor 2 or contest both contributors to the mixture. Screen saves of samples and examples of comments are presented below. Please go to the Mixture Analysis - Likelihood Ratio and Hypothesis testing section for example calculations.

Contesting contributor two as a contributor to the mixture

Contesting contributor 1 as a contributor to the mixture.

Contesting both contributors to the mixture

Icons and Functions

Mixture Analysis Parameters
Launches the Mixture Analysis Settings Dialog Box

Edit Database

Navigates to the Edit Database function in Relationship Testing

Submit Genotypes to Database

Allows direct submission of reference file genotypes to the relationship testing database

Locus Name Group Editor

Allows the user to group different format names for recognition of a single marker

Toggle

Toggle between 1) all possible allele combinations (black and red font) and 2) only the allele combinations that conform to the mixture analysis parameters (black font)

Show Color

画
Allows the user to select all colors to view, hide all colors, or choose a single dye layer in the trace view. Choose a single dye by single left mouse clicking on the icon.

Marker

Select a Marker or Locus to view in the Electropherogram Charts

©(7)	
it	Submit Major
it	Submit Minor
it	Submit Unknown Contributor

Submit to Relationship Testing Database

Submit the genotypes from deconvoluted mixture sample, Major contributor, minor contributor or unknown. The contributor label is unknown if the mixture approximately 1:1; neither file fits the definition of major or minor contributor

```
Q**(0) -
Search Major
    Search Minor
    Search Unknown Contributor
```


Search Relationship Testing Database

Search for exact matches and the likelihood ratio results without navigating to the Relationship Testing Application. Results are displayed in the mixture analysis screen.

Confirm
Unconfirm
Confirm Locus
Unconfirm Locu
Submit Major
Submit Minor
Copy
Export

Report Options

Right mouse click on the mixture analysis report table results to activate edit confirmation, submit, copy and save options

Save and Export Result Tables

Right click on the genotype combination table or the likelihood ratio report to copy and paste the results into an existing document. Select Export to save tables as a .txt tab delimited file. Comments that are typed in by the analyst are saved with the likelihood ratio report.

Mixture Analysis Equations

Major $M x=(A+B) /(A+B+C+D)$
User selects whether to use peak height or peak area in the analysis parameters. For these examples, peak height was selected as an analysis parameter.

Example using peak height Marker D3s1358:

$$
\begin{gathered}
M x=(972+932) /(972+932+343+526) \\
=0.69
\end{gathered}
$$

The major contributor accounts for 69% of the DNA in the mixture

sample.
Residual $\quad \sum(\text { pa observed - pa expected })^{2}$
Observed proportions are calculated from the data. Expected proportions are calculated using the methods of Gill et al. Forensic Sci. Intern. 91:41-53. (table at right) Average Major Mx is determined from a series of iterations.

Example for D3s1358

Observed proportions		Expected proportions 14 0.1237
15	0.1897	$(1-\mathrm{Mx}) / 2=0.14$
16	0.3505	$(1-\mathrm{Mx}) / 2=0.14$
17	0.3361	$\mathrm{Mx} / 2=0.36$
		$\mathrm{Mx} / 2=0.36$

Residual $=0.0034$

Heterozygous Imbalance (HIM)
Example for D3s1358
Major HIM $=932 / 972=0.96$
Minor HIM $=343 / 526=0.65$

Combinution	Allele				
	A	B	c	D	
$A B, C D$	Mr/2	$M_{1} \times 1 / 2$	$(1-\bar{M} x) / 2$	$\left(1-\frac{M}{t}\right)^{\prime} 2$	
AC.BD	Ats/2	$(1-\mu(x) / 2$		$(1-\mu /(x) / 2$	
$A D . B C$	$M_{1} / 2$	$(1-M x) / 2$	$(1-M / 2) / 2$	SRK/2	
BCAD	(1-M(t) $/ 2$	$\mathrm{Max} / 2$	M $\mathrm{A} / 2$	$(1-\bar{M} x)^{2}$	
BD.AC	$(1-M(x))^{2}$	$\overline{\mathrm{M}} \times 2$	$\left(1-\mu x x^{\prime} / 2\right.$	$\mathrm{M}_{\mathrm{x} \times 2}$	
CDAB	$\left(1-\frac{1}{2} x\right) / 2$	($1-\mathrm{M}(\mathrm{x}) / 2$	M $\times 12$	Nix/2	
The three allele model					
Combination	Allele				
	A		B	c	
AA.BC	$\begin{aligned} & M(x \\ & (1-N(x) / 2 \\ & (1-M(x) / 2 \\ & 0.5 \\ & 1-N A(x) / 2 \\ & A R / 2 \\ & 1-M(x \\ & M x / 2 \\ & M x / 2 \\ & 05 \\ & M x / 2 \\ & (1-A(x) / 2 \end{aligned}$		$\begin{aligned} & \left(1-M_{x} / / 2\right. \\ & M x x \\ & 1-M(x) / 2 \\ & N_{x / 2} \\ & N_{x / 2} \\ & 0.5 \\ & M x / 2 \\ & 1-M x \\ & M x / 2 \\ & (1-M x) / 2 \\ & (1-M(x) / 2 \\ & 05 \end{aligned}$		
BB.AC					
CC.AB					
ABAC					
BCAC					
ABBC					
BC.AA					
${ }^{\text {ACBb }}$					
AB.CC					
AC.AB					
AC.BC					
${ }^{\mathrm{BC}, ~ A B}$					
Two-allele model					
Combination		Allele			
		A		B	
ATAB		$\begin{aligned} & (s / z / 2)+0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & (1-M(t) / 2 \\ & 0.5 \end{aligned}$	
$A B . A B$					
AA, BB		Ms		$1-A x$	
AB.AA		1-(akr $/ 2)$			
bB.aA		$1-N \cdot x$		$\frac{A_{s / 2}}{M_{x}}$	
${ }^{\text {AB.BE }}$		Str/2		$\begin{aligned} & M x \\ & 1-(M \times(2) \end{aligned}$	
вв.AB		(1-3ta) 2		$(\mathrm{Mx} / 2)+0.5$	

Exclusion Probability for mixture profiles uses the allele frequency of a given population for each allele in a mixture sample. GeneMarkerHID calculates exclusion probabilities for two person mixtures and mixtures of three or more contributors. When the CPE is multiplied by 100 (RMNE - Random man not excluded) it provides information about the percent of people in the population that are excluded from being contributors of the mixture because they have one or more alleles that are not present in the mixture.

Probability of Inclusion (PI)
$\mathrm{PI}=(\mathrm{p} 1+\mathrm{p} 2+\ldots .+\mathrm{p} i)^{2}$
Probability of Exclusion (PE)
PE = $1-(\mathrm{p} 1+\mathrm{p} 2+\ldots \mathrm{p} i)^{2}$

Combined Probability of Inclusion (CPI)

PI1 x PI2 xx PI i
Combined Probability of Exclusion (CPE)
$\mathrm{CPE}=1-[(1-\mathrm{PE} 1) \times(1-\mathrm{PE} 2) \times \ldots \times(1-\mathrm{PE} i)]$

PI, CPI, PE, CPE examples

PI for D3s1358
$=(0.1404+0.2463+0.2315+0.2118)^{2}$
$=0.6889$ or 69% of population are included based on this one marker

PE for D3s1358
$=1-(0.1404+0.2463+0.2315+0.2118)^{2}$
$=0.3111$ or 31% of the population are exclude based on this one marker

CPI $=1.21 \mathrm{E}-09$ or 0.000000121%
When multiplied, the PIs of each marker provide the cumulative PI (multiply by 100 to have the percent of the population that can
 be included as potential contributors to the mixture.

CPE or NRME $=1-1.21 \mathrm{E}-09$ or 99.9999998% of the population can be excluded as potential contributors to this mixture.
CPE = $1-[(1-\mathrm{PE} 1) \times(1-\mathrm{PE} 2) \times \ldots \times(1-\mathrm{PE} i)]$

Likelihood Ratios - Hypothesis testing and calculations
Likelihood Ratios are obtained by comparing the null hypothesis (which has a probability of 1) to an alternate hypothesis. When there are two contributors to a mixture there are several alternate hypotheses that the analyst may want to test. Several scenarios comparing Probability of the Null Hypothesis to the Probability of the Alternate Hypothesis are listed below with sample calculations.

Scenario 1

The project contains a mixture profile and one single source profile that is a potential contributor to the mixture.
Null hypothesis $=$ this individual is a contributor to the mixture sample
Alternate hypothesis = some other random, unrelated person from the population is the contributor Probability of Alternate hypothesis
p^{2} for homozygotes
$2 p_{1} p_{2}$ for heterozygotes

When two potential contributor profiles are available the following scenarios may be tested.

Scenario 2
Null Hypothesis, Mixture is from A and B
Alternate hypothesis, mixture is from person B and one unknown person unrelated to A
The project contains a mixture and two single source potential contributors. Both single source samples are selected and person A is contested. In the column for Major contributor allele combinations, we see there is only one viable allele combination for the major contributor (person A) - 12,14 or (a, b)

Example for D8S1179
Alleles
Major contributor $(\mathrm{a}, \mathrm{b}) \quad 12,14$
Minor contributor (a,c) 10,12
Mixture
10, 12, 14
PowerPlex 16 US Caucasian allele frequencies
100.1020
120.1454
$14 \quad 0.2015$

$\operatorname{LR}=\left(2 \times \frac{1}{0.1454 \times 0.2015)=17.06}\right.$

Scenario 3

Null Hypothesis, Mixture is from A and B
Mixture is from A and an unknown person, unrelated to B
The project contains a mixture and two single source potential contributors. Both single source samples are selected and person B is contested. In the column for minor contributor allele combinations, we see there are three viable allele combinations for the minor contributor (person B) 10,$12 ; 10,14 ; 10,10$ or (a,c; b,c; cc)

$$
\operatorname{LR}=(0.1020 \times 0.1020)+(2 \times 0.2015 \times 0.1020)+(2 \times 0.1454 \times 0.1020)
$$

$$
=\quad \frac{1}{0.0812}=12.32
$$

Scenario 4

Null Hypothesis, Mixture is from A and B
Mixture is from two unknown people unrelated to A and B

The project contains a mixture and two single source potential contributors. Both single source samples are selected and both are contested. As in the above scenarios, there is only one viable allele combination for person A and there are three viable allele combinations for person B.

Likelihood ratio $\left.\left.=\frac{1}{(2 \times a \times b) \times((c \times c)+(2 \times b \times c)+(2} \times \mathrm{a} \times \mathrm{c}\right)\right)$
$\operatorname{LR}=1 /(2 \times 0.1454 \times 0.2015) \times((0.1020 \times 0.1020)+(2 \times 0.2015 \times 0.1020)+(2 \times 0.1454 \times 0.1020))$
$L R=210.245$

Chapter 8 Relationship Testing

Chapter 8 Relationship Testing

Chapter 8 Relationship Testing

Kinship Analysis using Identity by Descent

Data Base Search: Finding Nearest Relatives
Automated Pedigree Diagrams
Paternity Index using American Association of Blood Banking (AABB) trio and single parent equations

Kinship Analysis using Identity by Descent

Overview

STR profiles of two individuals can be compared to determine the likelihood that they have a specific relationship versus the likelihood that they are unrelated. Kinship analysis compares STR profiles from individuals to determine likelihood of a family relationship versus the likelihood that two individuals with these STR profiles are unrelated. The formulas used to calculate the level of kinship depend on:

1. Probabilities that 2,1 or 0 alleles will be shared (IBD identity by descent) given a specific relationship
2. The probability of a specific genotype X given genotype Y at all loci, under the conditions that X and Y have 2,1 , or 0 alleles IBD

GeneMarkerHID uses established, rigorous statistical analysis (Kinship formulas from Brenner 2004; Eisenberg and Planz 2007) to calculate probabilities and likelihood ratios for different relationship levels including: Parent/child, Siblings, Half-siblings, Uncle/Nephew, Cousins and Grandparents.
$\left[\mathrm{P}_{2(\mathrm{xy})} \Phi_{2}\right]+\left[\mathrm{P}_{1(\mathrm{xy})} \Phi_{1}\right]+\left[\mathrm{P}_{0(\mathrm{xy})} \Phi_{0}\right]$
Where:
$P_{2(x y)}=$ Probability of 2 alleles IBD (I) given the genotypes of sample x and sample y
$P_{1(x y)}=$ Probability of 1 alleles IBD (T) given the genotypes of sample x and sample y
$P_{0(x y)}=$ Probability of 0 alleles IBD (O) given the genotypes of sample x and sample

Kinship Formula Transition Matrices
Identity by Descent (IBD $\left.\Phi_{2}, \Phi_{1}, \Phi_{0}\right)$ for each relationship category:

	Φ_{2}	Φ_{1}	Φ_{0}
Parent-Child	0	1	0
Siblings	0.25	0.5	0.25
Half-siblings	0	0.5	0.5
Cousins	0	o.25	0.75
Uncle/nephew	0	0.5	0.5
Grandparent/	0	0.5	0.5
Grandchild			

Procedure

Although allele calls can be edited in the Relationship Testing tool, it is easier to begin a relationship test analysis with good, clean traces. In order to begin with the best sample traces, complete size calling, Panel alignment, and allele editing in the Main Analysis (see chapter 2 General Procedure) window prior to launching the Relationship Testing tool.
File types accepted or generated by GeneMarkerHID Pedigree module:
Pre/Ped files
SGF
TXT
BMP
The Save to DataBase function allows easy updates of the relationship testing database. The default database includes 13 CODIS markers and should be used with complete profile samples. Additional markers can be added to the database.

To launch the Kinship Analysis function, select Applications \rightarrow Relationship Testing from the menu bar of the Main Analysis window.

1. Open data file or previously saved project
2. Run Wizard to call alleles
3. Select Relationship Testing from the Applications drop down menu
4. Select Allele Frequency of the appropriate population from the Tools drop down menu
5. Select Kinship Analysis Tool - use drop down menus to select individuals for comparison
6. Select the desired relationship level and likelihood ratio, probability or both at the kinship analysis settings

Probabilities for the occurrence of the genotypes within the population having a specific relationship or being unrelated for each locus and all loci combined are displayed in table form.
7. Likelihood ratios for each locus and combined likelihood ratio of a related (parent/child, sibling, half sibling) are presented in table form.

Icons and Functions

IUS Relationship Testing
File DataBase Tools

Relationship Testing Main Drop-down menus
 Select from File, DataBase or Tool options

Relationship Testing Tools include:

Relationship Testing		
File DataBase Tools Family Group Tool Allele Frequency Mutation Rate Population Statistics Kinship Analysis Genetics Analysis Settings		

New Pedigree File
Select New Pedigree File to create a new pedigree with multiple families $\underline{O R}$ select New Family to add a family to the pedigree file. Enter the first family member's information into the New Family (New Individual) box and click OK to create a new Pedigree Tree.

Open Pedigree File

Launches the Load Pedigree File box. Select a PED or PRE file to upload (the SMP file will automatically upload) and click OK.

Save Pedigree File Launches the Save Pedigree File box. Enter filename and change directory to save the Pedigree Files (PRE, SMP, DAT).
T Show Individual Name
When selected, the individual ID will be displayed in the nodes of the Pedigree Tree.

Update Sample Data

Select to refresh the Mendelian inheritance calculation after a node or allele is edited and after selection a different family when the 'show genotype' display is used

Relationship Testing Parameters

Launches the Relationship Testing Settings box. Options for selected samples or all samples, selecting the appropriate allele frequency for the population, mutation rate, and prior probability, gender known and limits based on LR or minimum number of retrieved samples.

Show Conflict

Toggle between Show Conflict with Parents and Show Conflict with Sibling. Conflicting and suspected Markers based on Mendelian inheritance are highlighted.

Show Genotype

Toggle between Displaying and Not Displaying the Genotypes of the selected node

Family

Select a family from the currently uploaded pedigree file to view and edit.

Marker

Select a Marker or Locus to view in the Electropherogram Charts.

Show Color

Allows the user to select all colors to view, hide all colors, or choose a single dye layer. Choose a single dye by single left mouse clicking on the icon.

Zoom In

Use the icon to zoom in on the image, or hold down the left mouse button and draw a box, from the top left corner to bottom right corner, around the area you wish to zoom in.

Zoom Out

Use the icon to zoom out on the image, or hold down the left mouse button and draw a box, from the bottom right corner to top left corner.

Set Axis

The default setting automatically sets the Y -axis according to the maximum peak intensity of the samples. Two other options are available: auto fit the Y-axis using peak intensities of the alleles, or the user can select the ranges for the X - and Y -axis.

Browse by All Colors Displays a comparative view of sample electropherograms by dye color. Individual samples can be selected from the drop-down menu.

Save Kinship Report as .txt file or right click to copy/paste

Multi-Pair Kinship Analysis

The kinship analysis tool also supports Multi-Pair analysis - enabling the user to make multiple comparisons simultaneously, as opposed to selecting each pair individually. To navigate to the Multi-Pair kinship analysis module, simply open the Kinship Analysis tool and click the Multi-Pair tab.

Kinship Analysis						x^{-3}
Single Pair Multi-Pair \|						
Sample Selected	Allele Frequenc					,
	Panel Name:	Identifiler 15 _Butler2003				
-	Population:	US African American				
-	Mutation Rate:	AABB 2000				
\square PAT_10_C1.fsa \square PAT_10_C2.fsa						
VPAT_10_C3.fsa	Kinship Analysis					
\square PAT_10-F.fsa	Maiker	PAT_10_C1.fsa		PAT_10_C2.		
VPAT_11_F.fsa	CSF1P0	11	12	11	13	
\square PAT_11_M. P sa	TPOX	8		8		
\checkmark PAT_12_F.fsa	TH01	7	8	7	8	
\square PAT_12_M.fsa	W/A	16	18	15	18	
\checkmark PAT_13_F.fsa	D165539	12		10	13	
\square PAT_13_M.fisa	D75820	10	12	9	10	
	D135317	12	14	12	14	
Calculation Statement	D5S818	11		11	12	
Γ Using Specific Sample	FGA	20	26	22	25	
Γ Only do analysis with clean genotype	D851179	11	13	11	13	
	D18551	14		13	16	
	D21511	28	32.2	27	32.2	
	D351358	15		15	17	
		+7	m	17	n	${ }^{*}$

The Multi-Pair module offers two methods of analyzing the data, depending on whether or not the Using Specific Sample option is selected.

Procedure When Using Specific Sample is not Selected
In this case, simply select that samples that you would like to compare, and click the refresh button. The results will appear in the window to the right. Comparisons will be made between each sample in the selection. For example, if samples 'A', 'B', and 'C' were selected, results will be shown for AB, AC, and BC .

Procedure When Using Specific Sample is Selected
Selecting the option Using Specific Sample will allow the user to select a sample from the dropdown menu in the upper-left quadrant of the screen. This method differs from that described above in that the selected sample (from the dropdown) will be compared to each selected sample in the file list. For example, if sample ' A ' is selected from the dropdown, and samples ' B ', ' C^{\prime}, and ' D ' are selected in the sample list, results will be shown for $A B, A C$, and $A D$.

Only do analysis with clean genotype With this option selected, only samples with zero flagging will be included in the calculations, whether or not they have been selected.

Database Search: Locate Duplicate Samples and Nearest Relatives

Overview

Missing person identification may be necessary in many situations: mass natural disasters (earthquakes, tsunamis), human attacks (Sept 11 World Trade Center), war, or in the cases of thousands of missing children and adults reported every year. The database function of GM HID is capable of closed system searches for same sample matches - in the case where a DNA sample of the missing individual is available from personal use items. In the case where there is no personal sample available the kinship formulas (IBD) are used to find highest likelihood ratio scores for each relationship level. The database includes all CODIS markers and should be used with complete profile samples. The Save to DataBase function allows easy updates of the relationship testing database. It is strongly recommended to back up the database files on a regular basis.

Procedure

1. Open data file or previously saved project
2. Run Wizard to call alleles
3. Select Relationship Testing from the Applications drop down menu
4. Select Tools - Allele Frequency of the appropriate population from the Tools drop down menu
5. Select Tools - Genetic Analysis Settings if settings other than the defaults are desired

Individual sample

1. Tools $>$ family group tool $>O K$ to allow selection of each individual in the file as a separate node
2. Use the Family dropdown menu to select the individual file
3. Right click on the node and select find family from the drop-down menu
4. Left click on the Report icon in the tool bar to display the file name and any duplicates of that file found in the data base. The samples with the highest LR for each relationship type are displayed in descending order, in addition to the sex, number of matched alleles and matched markers

All Markers		\checkmark	Search:		䀎		
Samples $\mid \triangle$ Chats						Matched Markers	
	File Name	ID	Name	KN	Matched Alleles		
1	Same-Individual PAT_1_C.fsa	678		XY	32132	16116	1.24E+17
1	Father/Son PAT_1_F.fsa	679		XY	20132	16116	$2.94 \mathrm{E}+04$
	Mother/Daughter PAT_1_M.isa	680		x	18132	16116	7.17E+03
1	Full-Sibs						
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Hall-Sibs						
	PAT_13_M.fsa	865		x	15132		$4.51 \mathrm{E}+00$
	PAT_2_M.fsa	683		x	11132		$4.06 E+00$
	PAT-5-C.isa	690		*	14132		$2.32 \mathrm{E}+00$
	PAT_12_C.isa	860		*	15132		$2.00 \mathrm{E}+00$
	PAT_5_F.fa	691		XY	14132		1.96E+00
	PAT_7-C.fsa	696		XY	15132		1.67E +00
	PAT_12 M. fsa	862		*	15132		1.49E+00
	PAT_3_F.fisa	685		x	13132		1.44E+00

Sample in Pedigree Tree

1. Import or draw Pedigree Tree See Chapter 7 Pedigree Analysis and Automated Pedigree Tree.
2. Right click on the node and select find family from the drop-down menu
3. Left click on the Report icon in the tool bar to display the file name and any duplicates of that file found in the data base. The samples with the highest LR for each relationship type are displayed in descending order, in addition to the sex, number of matched alleles and matched markers

Search Database for .txt file genotype

Use this function if the genotype is only available from an archived file -the .fsa or .hid data file is not available. Format the .txt tab delimited file as in the example below - the exact format is required for the program to
 recognize the genotype. The file must be saved as .txt tab delimited.

1. Open a saved project in the main analysis screen
2. Select Applications - Relationship Testing
3. Select Tools - Allele frequency and select the appropriate table
4. Select File --- New Pedigree
5. Fill in the sample identifier or name and click on Manual Input and the open folder Icon
6. Use the open folder icon in the Genotype Editor to add genotypes from a .txt file
7. Select the desired genotype for the search (right click on the open area at the left to Remove Selected Files or to Clear all file in order to import additional genotypes).

8. Select Ok in both the Genotype Editor and New Individual Dialogs to display the node of the selected individual - then right click and select find family as in the above searches to search the database

Icons and Functions

學 Relationship Testing
File DataBase Tools

Relationship Testing Main Drop-down menus

Select from File, DataBase or Tool options

Relationship Testing Tools include:

Family Group Tool - for automated pedigree trio drawing
Allele Frequency for major US populations
Mutation Rate specified by AABB
Population Statistics for the file under analysis
Genetic Analysis Settings - allows setting the above options at the same time, additional settings include limiting the number of files retrieved in the database search by a minimum number, minimum likelihood ratio, gender known or gender not known, and Advanced settings -- to limit the search to specified relationship levels (the default is to search and display potential same individual, father/son, mother/daughter, sibling and half sibling).

Allele Frequency Tables

Allele frequency tables for major US populations may be selected from the drop-down menus in the Select Allele Frequency Settings box. If results of all populations are preferred, select the Use all Populations box and the final report will append with the results using each of the tables sequentially. The Delete button may be used by individuals with access rights to remove any population frequency tables that are not needed by the laboratory. Use the Open folder icon to import formatted allele frequency tables for other populations.

Allele Frequency Tables and Sources:

PowerPlex 16Hill, C.R., Duewer, D.L., Kline, M.C., Coble, M.D., Butler, J.M. (2013) Forensic Sci. Int. Genet. 7: e82e83 (Supplemental Material Table 2).

CODIS 13_2001_Budowle et al.
Budowle B, Shea B, Niezgoda S, Chakraborty R.
CODIS STR loci data from 41 sample populations. J Forensic Sci 2001:46;(3):453-489. http://projects.nfstc.org/workshops/resources/literature/CODIS\ STR\ Loci\ Data\ from\ 41\ S ample.pdf

African American, US Caucasian and Hispanic from the FBI column in Budowle 2001 were previously published in: Budowle B, Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM. Population data on the thirteen CODIS core short tandem repeat loci in African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians. J Forensic Sci 1999;44:1277-86.

ESX_ESI 2010_Hill et al.

Carolyn R. Hill, David L. Duewer, Margaret C. Kline, Cynthia J. Sprecher, Robert S. McLaren, Dawn R. Rabbach, Benjamin E. Krenke, Martin G. Ensenberger, Patricia M. Fulmer, Douglas R. Storts, John M. Butler Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex ${ }^{\circledR}$ ESX 17 and ESI 17 Systems
FSI:Genetics April 2010
http://www.cstl.nist.gov/strbase/NISTpop.htm
http://www.fsigenetics.com/article/S1872-4973(10)00071-2/abstract
GlobalFiler Hill, C.R., Duewer, D.L., Kline, M.C., Coble, M.D., Butler, J.M. (2013) Forensic Sci. Int. Genet. 7: e82-e83 (Supplemental Material Table 2).

Fusion

Hill, C.R., Duewer, D.L., Kline, M.C., Coble, M.D., Butler, J.M. (2013) Forensic Sci. Int. Genet. 7: e82-e83 (Supplemental Material Table 2).
Identifiler_15_2003_Butler et al.
John M. Butler, Ph.D.; Richard Schoske, M.A.; Peter M. Vallone, Ph.D.; Janette W. Redman; and Margaret C. Kline,
M.S. Allele Frequencies for 15 Autosomal STR Loci on U.S. Caucasian, African American, and Hispanic Populations J Forensic Sci, July 2003, Vol. 48, No. 4 Paper ID JFS2003045_484
http://www.cstl.nist.gov/biotech/strbase/pub pres/Butler2003a.pdf

New Pedigree File

Select New Pedigree File to create a new pedigree with multiple families $\underline{O R}$ select New Family to add a family to the pedigree file. Enter the first family member's information into the New Family (New Individual) box and click OK to create a new Pedigree Tree.

Open Pedigree File
Launches the Load Pedigree File box. Select a PED or PRE file to upload (the SMP file will automatically upload) and click OK.

Save Pedigree File

Launches the Save Pedigree File box. Enter filename and change directory to save the Pedigree Files (PRE, SMP, DAT).

T Show Individual Name

When selected, the individual ID will be displayed in the nodes of the Pedigree Tree.

Update Sample Data

Select to refresh the Mendelian inheritance calculation after a node or allele is edited and after selection a different family when the 'show genotype' display is used

Relationship Testing Parameters
Launches the Relationship Testing Settings box. Options for selected samples or all samples, selecting the appropriate allele frequency for the population, mutation rate, and prior probability.

땜 Toggle between Show Conflict with Parents and Show Conflict with Sibling. Conflicting and suspected Markers based on Mendelian inheritance are highlighted.

\%

Show Genotype
Toggle between Displaying and Not Displaying the Genotypes of the selected node

Marker: $12 \cdot \mathrm{TPOX}$

Family

Select a family from the currently uploaded pedigree file to view and edit.
Marker
Select a Marker or Locus to view in the Electropherogram Charts.

Allows the user to select all colors to view, hide all colors, or choose a single dye layer. Choose a single dye by single left mouse clicking on the icon.

Zoom In

Use the icon to zoom in on the image, or hold down the left mouse button and draw a box, from the top left corner to bottom right corner, around the area you wish to zoom in.

Zoom Out

Use the icon to zoom out on the image, or hold down the left mouse button and draw a box, from the bottom right corner to top left corner.

Set Axis

The default setting automatically sets the Y -axis according to the maximum peak intensity of the samples. Two other options are available: auto fit the Y-axis using peak intensities of the alleles, or the user can select the ranges for the X - and Y -axis.

Browse by All Colors

Displays a comparative view of sample electropherograms by dye color. Individual samples can be selected from the drop-down menu.

Importing Population Specific Allele Frequency and Mutation Rate Information

The Relationship Testing application in GeneMarkerHID has the allele frequencies for major USA populations and the mutation rates specified by $A A B B$ pre-loaded. Customization with population specific allele frequency and mutation rates is easily accomplished using the open folder icon of the allele frequency and mutation rate tools. Population specific allele frequency and mutation rate tables must follow the format of preloaded files and be saved as a .txt tab delimited file.

Tools \rightarrow Allele Frequency
 $$
\rightarrow \quad \rightarrow \text { Save }
$$

Building the Database

DataBase > Save to DataBase and select from three different routes.

1. Directly from the current project - Submit
2. From a CMF file - select Load from CMF and navigate to the saved file(s)
3. From a TXT file - select Load from TXT and navigate to the saved file(s)

Use the format of the spread sheet shown here for importing genotypes as .txt tab delimited files. The AID column has the file name. Each marker heading is in duplicate and the extended homozygous format is used for the allele calls. If there is a marker with allele drop out or null allele double asterisk ${ }^{* *}$ should be used in that cell. Please see Report Table in Chapter 3.

Genotypes saved to the database from a .txt file must have the format at follows:
AID column = sample identification
Row 1 B - The marker names (case sensitive) repeated as below

AA3 \quad - $0 \quad f_{x} \mid 18$																		
1	A	B	C	D	E	F	G	H	1	J	K	L	M	N	\bigcirc	P	Q	
1	AID	D8S1179	D8S1179	D21S11	D21S11	D7S820	D75820	CSF1PO	CSF1PO	D3S1358	D3S1358	TH01	TH01	D13S317	D13S317	D16S539	D16S539	D2
2	Sample_157	11	13	28	32.2		10	7	10	15	15	7	9.3	12	14	10	11	
3	Sample_156	12	13	27	28		8	8	11	15	14	7	7	12	12	10	11	
4	Sample_155	11	11	32.2	32.2		8	10	10	15	15	9.3	9.3	14	14	10	11	

Save and Print Report

'Find Family' Report - right click on the report to copy/paste directly into an existing document or report or export as a .txt file

Automated Pedigree Trio Diagrams and Analysis using Family Group Tool

When a naming convention is followed the Family Group Tool enables matching of files into family groups. Prior to starting, GeneMarkerHID has the option to automatically name the nodes with the file name or sample name. To use this feature, Select Tools - Auto Name Individual and select sample name or file name. If edits are made to the file selection for anode after the pedigree auto-draw, make sure the clip icon next the sample name is selected.

Procedure:

1. Select Applications \rightarrow Relationship Testing from the menu bar of the Main Analysis window
2. Match by Sections, Positions or Group Order and then Match Whole Words \rightarrow OK
3. The Pedigree for the families is drawn and displayed at the left of the Sample List.

4. Right click on a node for edit or analysis options.
5. Select Family displays all electropherograms for the pedigree tree at the right.
6. Select Node or parents, siblings displays electropherograms
7. Edit Node allows editing of file or electropherogram information - Be sure to use the refresh key after any changes
8. Add Mate or child to expand the pedigree

Allele conflicts are listed and the node is highlighted in red. Clicking on the marker in the list links to the section of the electropherogram where the conflict can be visualized.

Renaming Tool:

If the file names are not adequate for use in the family group editor, the renaming tool provides transient naming conventions and allows the user to use the automated pedigree drawing instead of manually diagramming the pedigree.

Procedure:

1. Click on the $\xlongequal{\text { 屋 }}$ icon to activate the renaming tool
2. Enter values that have a family identifier file_relationship field
3. $\mathrm{C}=$ Child, $\mathrm{F}=$ Father, $\mathrm{M}=$ Mother - for several children in a family group, number them C1, C2, C3...
4. Enter Group Identification and Control Identification values as previously described for the family Grouping Tool

Wa Change Name			
Name Edit			
Key	Value		-
03.C01.561	12.5		
04_007.561	12.F		
05_E01.5G1	13.5		
06_F01.5G1	13.F		
07_G01.561	14.C		
08_H01.SG1	14.F		
OS_A02SG1	15.C		
10_B02SG1	15, M		
11_C02SG1	16.5		
12_D02.561	16.F		
13_E02SG1	17.5		
14.502561	17.月		
Sel Defait		OK.	Cancel

5. Click Match and then OK to draw the pedigrees

6. Right mouse click on the parent node - select Edit Node
7. Click the 'contested' box to obtain the PI calculation results using the trio or motherless case PI equations from AABB Recommendations for Relationship Testing

Deducing Missing Parent Genotype

The partial genotype of a missing parent is deduced based on the allele calls of the available parent and the child(ren). In the example below the father and three children genotypes were available. The Missing Mother genotype is deduced based on the genotypes of children and father. Deduced allele calls are indicated with underlines. Question marks indicate allele calls that cannot be made with the available data.

Editing Personal Information

Add/Edit/Delete Individual

If an individual is the first to be added to the Pedigree Tree, a family must be designated for the person. If the person is already added to the Pedigree Tree, right-click and select Edit Node to change that person's characteristics. To delete an individual from the Pedigree Tree, right-click the node and select Delete Node.

Family Name

Enter a name for the family in the free form text box. The Family Name field will not appear after the first individual is added to the Pedigree Tree. All subsequent individuals added will be considered members of the family.

Person Info

Name: Free form text box to enter a name for the individual. Display the individual's name in the Pedigree Tree by clicking the Show Individual ID icon in the toolbar. Gender: Select either Male, Female, or Unknown gender for the individual. Male nodes are squares, female nodes are circles, and Unknown gender nodes are displayed as a circle within a square.
Father/Mother: When more than one mate is displayed for a Mother or Father, a drop-down menu allows the user to choose which possible parent to associate with the child.

NOTE: The Gender and Father/Mother options are not available when adding a mate.

Affected Status

Affected Status options are available to mark individual nodes for genetic linkage calculations.
Before marking individual nodes with Affected Status, click the Pedigree
Parameters icon in the toolbar and adjust settings accordingly.
Unknown: The individual's phenotype is unknown. The node is displayed as an empty square or circle.
Unaffected: The individual does not show signs of the expected phenotype. The node is filled in white.
Affected: The individual expresses the phenotype. The node is filled in with diagonal hashed lines.

Contested

Select Contested to activate the ability to identify a file as an alleged father, unidentified human remains (UHR) or a contested child

Sample File

Select the individual's sample file from the drop-down list. Only samples in the current dataset will be available. If no sample file is chosen, the node will be grayed out. Additionally, drag and drop a sample from the Sample List onto a node to associate the sample with the individual node.

From Database

Select the individual's sample file from the drop-down list. Any sample that was previously saved to the database will be available.

Add Family Members

To add family members to the Pedigree Tree, right-click a node and select Add Mate or Add Child. The Add Mate or Add Child box will appear. Enter the individual's information and click OK.

Save Report

Export Bitmap to save the diagram

Paternity Index Calculations

Overview

Paternity index (PI) is calculated using the Recommendations of AABB Standards For Relationship Testing Laboratories, Appendix 8). The combined PI is displayed to the right of the file of the alleged father and the Calculation Details tab contains the results for each marker. As with the Identity by Descent calculations, the user may opt to allow for mutation (allele conflicts) using the analysis parameters and the AABB mutation rates.

Procedure

1. Open a saved project file or import raw data and complete analysis as in chapter 3.
2. Tools - Select the desired Allele Frequency Table (or use all populations)
3. Tools - Relationship Testing - Tools - Family Grouping Tool
4. Group families as in the previous section.
5. Right mouse click on the alleged father node and edit node.
6. Select Alleged Father in the Contested section.
7. The PI is displayed in the table.
8. Select Calculation Details for the results at each locus
9. Right mouse click on the table to copy/ paste or save as .txt tab delimited file

						35	140		1×1.
		\square				Ma/m	ands	Smant	P
				2				Pat Latase_139	
								Pat 1 Cha	48 F . 0 (
O\|S 178		1373		14 in		- 4		Pat unta	
021519		${ }^{30}{ }^{28}$		${ }^{29} 30$		-5.		Pat-2ction	
075820		813		128	tatimsmbed			- \times	
${ }^{\text {cosem }}$		1313 17 15		18.15				aratuer	
TH01		79		79	Norer 1	-		untromm	
013317		12.12		128	Nome 1				
0165539		12.10		13 71	Genstar funcrimor	Unomm		Unathesed	
WA		1715		1716	Fater 1 \quad]				
Trox		78		${ }^{811}$	Wener \quad]			Corteus	
Diss5 ANEL		1615 $\times 8$ $\times 8$		$\times{ }^{9} 14$				UHA	
0.55818		1413		12.11	\lceil Decenem			Caremoside	
FGA		28.23		20.20	Prowiton			onee	
					Gancos				
			3					\cdots	
								\square 비	
	Dashipg		1314		CMmosuina ${ }^{\text {ef }}$				
	Delsit		${ }^{28} 29$						
	csipipo		1312 1312		$\square \mathrm{Ok}$				
	D3S1359		15.18						
	Trom		79						
	${ }^{\text {Din }}$		1212 1013						
	D2Si33		2520						
	$\square 195433$		14.13						
	wa		15.17						
	${ }_{\text {Tras }}^{\text {P185s }}$		\% ${ }^{8.8} 8$						
	AMEL		Y \times						
			1312 28						
	FLa		2320						

Reverse Parentage

Reverse parentage is calculated by right mouse click on the node of the child and selecting contested. The calculation is that of the AABB Standards for Relationship Testing; often used in cases of unidentified human remains when potential mother and father genotypes are available.

Save and Print Reports

Activate the Save or Copy/Paste for Print reports by using a right mouse click anywhere in the results table. Tables are saved as .txt tab delimited files or may be copy/pasted into an existing report.

Chapter 9 Cell Line Authentication - Percent Same Genotype Search

Chapter 9 Cell Line Authentication - Percent Same Genotype Search

[^0]
Cell Line Authentication

Overview

Cell line authentication is the process of using genetic markers to determine if the cells in a culture sample are in fact the expected type．Cell line authentication has become a necessity in many fields， thanks in part to revelations that a significant number of cell lines are either contaminated or misidentified entirely．

Typically，a cell culture is sampled and amplified using a commercially available qfPCR kit．The genotype obtained from this amplification is then compared to a database of known genotypes to determine the most probable match．GeneMarkerHID＇s Cell Line Authentication module provides database and searching functionality，both of which are described in detail below．

Opening the Cell Line Authentication Application To open the Cell Line Authentication Application simply navigate to Applications＞Cell Line Authentication．Like other GeneMarkerHID applications，you must have a current project loaded in order to enter this application．

ker HID－Celllid project．SGF		
Project Applications Tools Help		
器 Pedigree		（ 区 区
$\begin{array}{lll}\text { ject．SGF } \\ \text { ata } & \text { Profile Comparison View } \\ \text {－all } & \text { Relationship Testing } \\ \text { 2＿HCT111 } & \text { Mixture Analysis }\end{array}$		
		W＿Celll＿100
		四
2＿Hela＿P Cell Line Authentication		
2＿CSA＿PW＿Lellio＿TOUET3．1s2＿K562＿PW＿Cello＿100613．f		
	5，800	
	5，600	
	5.400	

Icons and Features
Save Icon：Launches the＂Save As＂dialog box．Search Results may be exported as either an excel（．xls）or text（．txt）file．（Also：File＞Save Report．）

Submit to Database：Opens the＂Submit Genotypes＂dialog，which enables the user to save genotypes to GeneMarkerHID＇s Cell Line database．Genotypes can be uploaded from samples in the current project，or from samples saved in a text file．（Also：File＞Submit to Database．）

Database Editor：Launches the＂Genetics Database Editor＂from which the user can manage， edit，and delete genotypes in the Cell Line Database．（Also：File＞Database Editor．）

號 Refresh：Used to refresh search results．This is most commonly needed after changing the percent match threshold．

Building Your Database

GeneMarkerHID provides a built in database to which the user can save Cell Line genotypes．（Note that the Cell Line database is unique and separate from the Relationship Testing database．The user has two methods of populating the database：importing sample genotypes from the current project，or importing genotypes saved in a text file．

Importing Genotypes from the Current Project

1．Enter the Cell Line Authentication Application（Applications＞Cell Line Authentication）．
2．Navigate to the＂Submit Genotypes＂dialog box by either clicking the＂Submit to Database＂ icon，or by navigating to File＞Submit to Database．
3．Sample Genotypes derived from samples in your current project will be displayed in the Submit Genotypes window．Use the checkbox in front of each sample to choose whether or not so submit it to the database．
4．After making your selections click Submit．You should receive a confirmation that the genotypes were uploaded successfully．The sample genotypes are now saved in the database．

Importing Genotypes from a Text File
This option is more commonly used to transfer a large, preexisting database into GeneMarkerHID. It's also useful for submitting genotypes from cultures for which samples are no longer available.

1. Begin by formatting your database in Microsoft Excel or another spreadsheet program. Use the exact formatting shown below

Paste										\% ,	$\begin{array}{r}4.0 \\ \hline 0.00 \\ \hline 0.0\end{array}$	Conditional Format $\left.\begin{array}{r}\mathrm{Ce} \\ \text { Formatting }\end{array}\right]$ as Table - Style		
		Font 『				Alignment			Number \quad -			Styles		
P32			- f		24									
1	A	B	C	D	E	F	G	H	1	」	K	L	M	N
1	AID	AMEL	AMEL	CSF1PO	CSF1PO	D13S317	D13S317	D16S539	D16S539	D18S51	D18S51	D19S433	D19S433	D21S11
2	HCT-116		Y	7	10	10	12	11	13	**	**	**	**	**
3	K-562	X	X	9	10	8	8	11	12	**	**	**	**	30
4	HELA	X	X	9	10	12	13.3	9	10	**	**	**	**	**
5	BR:BT_54 X		X	10	10	11	11	8	8	**	**	15.2	15.2	32.2
6	BR:HS578		X	13	13	11	11	9	12	16	16	14	15	29
7	BR:MCF7 X	X	X	10	10	11	11	11	12	14	14	13	14	30
8	BR:MDA_X		X	12	13	13	13	12	12	11	16	11	14	33.2
9	BR:T47D	X	X	11	13	12	12	10	10	17	17	14	14	28
10	CNS:SF_2		Y	12	12	11	11	9	13	16	16	13	15.2	30
11	CNS:SF_2 ${ }^{\text {P }}$		X	10	13	10	10	12	13	15	18	12	15	28
12	CNS:SF_5		X	11	13	12	12	11	12	20	20	14	14	29
13	CNS:SNB_X		Y	12	12	10	11	12	12	**	**	13	15	29
14	CNS:SNB_X		X	10	12	8	12	11	13	18	18	13	14	30
15	CNS:U251		Y	12	13	10	11	12	12	13	13	13	15	29
16	CO:HCT_1		X	7	10	10	12	11	13	16	17	12	13	29
17	CO:COLO2 X		X	11	12	10	12	12	13	18	18	13	14	30.2

Specifically, the phrase "AID" should be written in the upper left-hand corner of the spreadsheet. List each marker name twice (once for each allele). Use ** with sample and markers for which no data is available. No cell should be left blank.
2. After formatting the table, save it as a tab-delimited text file (.txt).
3. Enter the Cell Line Authentication Application (Applications > Cell Line Authentication).
4. Navigate to the "Submit Genotypes" dialog box by either clicking the "Submit to Database" icon, or by navigating to File > Submit to Database.
5. Click Load From Text, and then navigate to your saved text file.
6. You should see the contents of the text file displaed in the Submit Genotypes dialog box.

7. Click Submit to save the genotypes to the database.
8. You should receive a confirmation that the genotypes were succesffully saved.

Searching the Database

Once you have established your database, you can use the Cell Line Authentication Application to query your samples against the database and search for the closest matches.

1. Load your raw data files, process them, and make any necessary edits. (See Chapter 2: General Procedure for more information.)
2. Enter the Cell Line Authentication application (Applications > Cell Line Authentication).
3. Use the dropdown menu (in the column labeled "Sample") to select a sample file from your current project.
4. When you use the dropdown to select a sample, two things will happen: (1) That sample's genotype, obtained from your current project, will appear in the sample genotype table directly below the dropdown. (2) The program will automatically search your Cell Line database for samples that most closely match the selected sample.
5. Results are displayed in right half of the Cell Line Application. Select a result to display that sample's genotype in the Reference column. Differences are highlighted in yellow.

Adjusting the Match Percentage

When searching the database, GeneMarkerHID uses a percent match calculation to compare genotypes. The user may set a Percent Match Threshold, such that only the matches meeting this threshold are displayed. Next to the words "Show Matches Greater Than" is a field in which the user may input their desired match threshold ($0-100 \%$). Only matches great than or equal to this number will be displated. Clikc the Refresh Icon (binoculars) to update the results.

Sex Marker

The marker name typed in the "Sex Marker" field is ignored during the seach, and is not used to calculate the percent match value.

Managing Your Database

Overview

You can manage your database from the Cell Line Authentication Application by navigating to File > Database Editor, or by clicking the Database Editor icon. Either method will open the Genetics Database Editor tool.

Samples saved in the database are listed in the main window. Use the $<>$ buttons to page forward and backwards, or use the $|<>|$ buttons to move directly to the first and last page, respectively. Simply click on an entry to display that sample's genotype in the lower table. Double click on a cell to edit the value. Other details relating to the selected sample, e.g. sex, ID number, and sample name, are displayed in the lower left corner of the window.

List Conditions

The options in the "List Conditions" section allow the user to search for a specific sample, or restrict the collection of samples that is being displayed.

Check the ID range box and input the desired range to show only samples with IDs that fall within that range. Select a Sex to only display samples of that sex. Finally, input a sample name to display samples that share that name. Click the refresh icon to see that changes take effect.

Other Icons and Features

Save Icon

Save any changes that have been made to a sample.

Refresh Icon

Update the display. Use the refresh icon to search for a sample using the "Sample Name" field, or to implement any other "List Conditions".

Export Codis

Launches the CODIS Export tool, which can be used to export a genotype or genotypes in CODIS format.

Chapter 10 Additional Tools

Chapter 10 Additional Tools
Automated Control Concordance
Contamination Check / Elimination Database
Filename Group Editor
Output Trace Data
Project Comparison
Convert TXT to Binary
Export Electropherogram
Quality Sensor Evaluation

Automated Control Concordance

Control samples in a project can be identified by either of the two methods described in Chapter 3. If the chemistry use has Y-STR markers, use male DNA for the positive control(s).

Positive Control Template Editor

1. Tools \rightarrow Positive Control Template Editor to launch dialog box
2. Import Genotypes from samples using dropdown menu
3. Select from functions to Add new positive control samples, Edit or Delete files

4. Select the appropriate positive control file from the dropdown menu in the run wizard. Summary message is located at the bottom of the main analysis window. For example, if a project has one positive control file that is in agreement with the positive control template, the message is PC error 0/1.

Example of Positive and Negative samples in concordance with controls
5. If the positive control samples are not in agreement with the template the message will be PC error $1 / 1$ and red lines will indicate the peaks in error.

Example of Positive sample not in concordance with positive control template

Negative Control Concordance

1. Use View \rightarrow Preferences \rightarrow Forensic to select the file name recognition
2. GeneMarker automatically changes font of negative control file name to red in Filename Tree
3. Any negative control sample that has peak(s) will result in a negative control (NC error) in the Project Summary Bar

Contamination Check and Elimination Database

This link enables analysts to automatically detect any lane-to-lane contamination within a project and compare each sample of a project to a staff database to detect potential contamination from someone who has handled the samples. In order to search the staff database, it is necessary to first save the desired genotypes to a contamination database. This database is separate from the relationship testing (Chapter 8) and cell line authentication (Chapter 9 percent same genotype search).

Icons and Features

Save Icon: Launches the "Save As" dialog box. Search Results may be exported as either an excel (.xls) or text (.txt) file.

Submit to Database: Opens the "Submit Genotypes" dialog, which enables the user to save genotypes to GeneMarkerHID's Contamination database. Genotypes can be uploaded from samples in the current project, or from samples saved in a text file.

Database Editor: Launches the "Contamination Database Editor" from which the user can manage, edit, and delete genotypes in the Contamination Database.

Refresh: Used to refresh search results. This is most commonly needed after changing the Similarity Ratio threshold.

Display Name: Choose between displaying sample names or file names (default).
Highlight Groups: Choose to highlight samples by order or by similarity range (\%).

Saving reference genotypes to the contamination database

1．Main tool bar－Project－Contamination Check．
2．Click on the Database icon at the right side of the screen The dropdown box at With Data base is empty at this point．It will be available from the dropdown menu after files have been
 added to the database．

辿 Contamination Check						－\times
	Other Settings Export Similarity Ratio $>=\sqrt{75} \%$ Γ Specified Sample as Comparison PAT＿1＿C．lisa	Match Type $\sqrt{\checkmark}$ Within Project $\sqrt{\checkmark}$ With Database Contamination Γ DB as Comparisor：		V Highlight Groups －By Order 5 \bigcirc By Similarity Range $\sqrt{5} \%$	Display Name －File Name C Sample Name	－ำ 閣（回 Search
Within Proiect｜With DB｜						
Group No．Compaison Sample	Reference Sample	Matched／T otal Reference	Similainity Ratio	Malched Makers（Alliles）		
PAT＿5＿C．fsa	PAT＿5＿M．fsa	$21 / 28$	75．00\％	D8S1179（13），D21511（29，30．2），D79	2012）．CSF1P．．．	

3．Submit genotypes to the Contamination Check Database
a．If the samples are in the current project，submit to database by clicking the Submit button in the lower right（Figure 2 below）
b．To submit archived genotypes from CODIS format ．cmf files，click the Load from CMF－Add－ select the file（s）－－OK
c．To submit archived genotypes from ．txt files，format the ．txt file exactly as shown in Figure 1 below．Row 1 must have AID（accession ID number）in the first cell followed by the marker names．Marker names are case specific and must match the marker names of the genotyping panel．Click the Load from TXT－Add－select the file－OK
d．Samples with the same name but a different kit was used can be submitted to the database．
i．When submitting the second sample with the same name，select＂ No ＂when the error message below is displayed：

Figure 1：Txt file format required to save genotypes to the database from a ．txt file．

Figure 2：Submit Genotypes screen．When submitting profiles to the contamination database from a current project．，name，department and short comments identifiers can also be included with the profile in the contamination database by typing them in the appropriate cell before clicking the Submit button．

To remove profiles from the contamination database

1. Select the Contamination Database Editor icon
2. Right mouse click on the profile and select Delete
3. Hold down the Ctl key and click with the mouse to select several samples, or the Shift key and mouse select consecutive samples, right mouse click on the highlighted samples and delete all highlighted profiles from the database
4. If the database is large, use the List Conditions and refresh icon to locate samples to delete using the ID Range or the sample name.

Checking project for potential contamination:

A project with data from MX2005 study (http://www.cstl.nist.gov/strbase/interlab/MIX05.htm) is used below to demonstrate the contamination check process. The samples are a two-person mixture and a single source file; all of the allele calls of the single source file are included in the mixture. We use these to simulate lane-to-lane contamination where one of the genotypes is contained within the other. Table 1 displays the allele call and peak heights for the two samples. Note that all allele calls have a green flag (there are no allele calls with quality reason flags). It is recommended to resolve any quality reason flags before entering the contamination check. The percent similarity is calculated using only the green labeled alleles (alleles that have passed all analysis parameters or that have been confirmed by the analyst in the main analysis window). If a sample has any quality reason flagged peaks, the sample is used for the contamination check, however, the flagged alleles will not be used in calculating the Similarity Ratio.

Similarity Ratio $=\#$ of reference sample alleles included in the comparison sample $\times 100$
Total \# of reference sample alleles

Contamination check parameters include: Excluding control files or files with null markers, the similarity ratio value, option to use one sample as the comparison profile, compare all samples in project to each other and/or compare all samples in the project to genotypes in a database. Samples with more null markers than specified in the Exclude Sample Settings will be excluded from the contamination check (Figure 3). Check boxes for Match Type are used to specify lane-to-lane similarity of genotypes (Within Project) and/or samples of the project compared to genotypes within a database (With Database).

Select the preferred settings at the top of the screen. Results for sample to sample comparison are displayed when the Within Project tab is selected (Figure 1). The results from the Contamination Database are displayed at the With DB tab (Figure 2). Columns can be reordered by clicking on the column header.

Figure 1: In Group 1, 100% of the Reference sample alleles are included in the comparison sample. In Group 2, 55% of the alleles in the reference sample are included in the comparison sample. The last column of each row contains the shared genotype. The results can be saved as a .txt or .xlxs, .xls file from the disk icon.

Figure 2: The With DB tab displays the results comparing samples from the project to reference samples in the database. The single source file from the case and several other single source files were previously saved to the database to provide matches to the two samples of the project for this demonstration. The results indicate that 100% of the allele calls in MX05case2_victim sample are included in the comparison samples 1 and 2 . Four samples from the database (Reference Samples) have greater than 50% similarity to the Control Sample MX05case2_evidence.fsa of the current project. Note also that reference samples retrieved from the database are designated with DB:filename in the Reference Sample column.

Table 1：Genotypes of the two samples used in Figures 1 and 2 as examples of positive matches for the contamination tool．

\＄Catamatison Cowk				ㅁ．	keport 觡或	En	
rows smon Sexing		Hechtipen	（a）成的		｜ru＊	\＃arzas	｜cheier｜chitior｜
P Ladder PNC［PP	Export Greater than 50				matze．tos	5082T0．	a a^{+3}
7－With greatar than $\sqrt{0}$ nul Markers	Srowered Smoch aiconewion					P21812	
－wirn gratar man 0 O nul Marken	\bigcirc					57883	＊
anfere whins						astiso	－－
	Rethemat					mation	a
						\％reor	昌：
						220659	［12 ${ }^{12}$
						（10x／8x	
						227583	［15［is．z
						Fors	
						trow	a ${ }^{\text {a }}$
						221863.	
						yatis	$\square=\square$
						Eamis	
						12	－$=$ a
						238179	E12 ${ }^{\text {a }}$ 13
						0182	
						－75020	$\square^{11} \square^{11}$
						5axive	a
						Faise	Eat ${ }^{\text {a }}$
						（1）3	日：『～
						2usa	a＝ais
						5\％mor	$a^{0} 0^{12}$
						Parlisi	
						2938683	
						Tra	
						21853	－${ }^{2}$－${ }^{15}$
						vac	－a
						3007	
						ram	$a=\square{ }^{-1}$
					Rat＿2x．ts	7amiz7	$a=83$
						P1811	（26．2039
						T3830	
						ariso	
						\％anm	axa
						Pamis	B $\square^{\text {a }}$
						тumat	ax 0^{6}
						F2maser	
						219643	$]^{15} \square^{15}$ 2
						Wa	$0^{34} 0^{44}$
						Wazi	max^{12}

Figure 3 A：When the Null Marker allowance is set to 0 any sample with null markers is excluded from the comparison．In this example Samples PAT＿2＿C and PAT＿2＿M have two null markers．They are not included in comparison．

Figure 3B: To include samples with null markers, increase the null Markers setting to the desired amount and click the search (binoculars) icon to refresh the table. Lines 19 and 20 show the results for these samples in the refreshed table.

Filename Group Editor

Project \rightarrow Apply Sample Grouping

The Filename Group Editor can be used to group family members or other related samples in the dataset based on their filenames for simplified analysis.

Procedure

1. Select Project \rightarrow Apply Sample Grouping
2. The File Name Group Editor window appears
3. Click the Load Files icon and select all files to pair if the dataset samples do not automatically appear in the File Name List field
4. Choose Match by Sections or Match by Fixed Position
5. Enter values for the Group Identification and Control Identification fields
6. Enter a Control Identifier value and click Match
7. The samples from the File Name List will be paired into groups in the Matched Groups window
8. When the samples are grouped correctly, click OK OR click
 the Save Groups to File icon to save the grouping information as a tab-delimited Text file
9. The File Name Group Editor window will close and the grouping information will appear next to the sample filenames in the Sample File Tree in the Main Analysis window (if Project \rightarrow Apply Sample Grouping was chosen).
10. To navigate by group in the Sample File Tree, hold down the CTRL key and hit the PageUp/Down keys. Sample groups will be opened consecutively.

Icons and Functions

Load Files

Opens a directory window where raw data files can be located and uploaded to the Filename Group Editor

Add Files

Opens a directory window where additional raw data files can be uploaded into the Filename List field

Remove Files

Removes any files selected in the Filename List. Select multiple files to remove by holding down the SHIFT key and selecting additional samples

Save Groups to File

Saves the filenames of the samples paired in the Matched Groups field. Samples identified as Controls will be in the first column of the Matched Groups tab-delimited Text file.

Match by Sections

Automatically separates the sample filenames into groups based on the specified Section Separators.
Group Identification: Identifies how to match the filenames into groups based on the section entered into the Compare by Section field. The section of the filename specified will be highlighted red in the File Name List.
Control Identification: Identifies which section of the filename contains the reference vs. sample information based on the section number entered in the Match to Identifier by Section field. The section of the filename specified will be highlighted green in the File Name List.

Match by Fixed Position

Allows the user to manually identify the characters of the filename for grouping the samples. Section Separators like " _ , -" are counted as individual characters.

Group Identification: Enter the number of the beginning and ending character to identify how to group the samples. The section of the filename specified will be highlighted red in the File Name List.
Control Identification: Enter the number of the beginning and ending character to identify which part of the filename contains the control identifier. The section of the filename specified will be highlighted green in the File Name List.

Control Identifier

Enter the character from the Control Identification section (highlighted green) that describes the control or reference sample. Example: $\mathrm{N}=$ normal or $\mathrm{R}=$ reference. Select Case Sensitive if the Control Identifier needs to be identified by upper or lower case letters.

Control Match Mode

Choose either Whole Words or Include.
Whole Words should be used if the characters entered into the Control Identifier field need to match exactly. Include should be selected if the characters in the Control Identifier field only need to be identified in the filename, i.e. not an exact match.

Output Trace Data

Tools \rightarrow Output Trace Data
The Output Trace Data tool exports raw or sized data of uploaded sample files as Text (.txt) or SCF (.scf) files.

Procedure

1. Select whether to export the data as a Text or SCF file
2. Choose the directory and folder to save the exported data to in the Output File Name field.
3. Select the samples to include in the output file from the Select Samples field.
4. Select which dye color data to export from the Select Dyes field.
5. Select whether to export raw or sized data from the Data Type options.

6. Click Export to export the data to the specified folder.

Project Comparison

Tools \rightarrow Project Comparison

The Project Comparison tool can serve three functions. First, it can be used to compare two independent analysts' analyses. Second, it can be used as a validation tool to determine differences in allele calls based on analysis parameters or instrument runs. Third, it can be used to compare the projects if the sample names are not identical, as would be the case if the samples were analyzed on two different genetic analyzers.
Procedure for comparison of projects with same file names

1. After initial dataset analysis, select Tools \rightarrow Project Comparison
2. The Project Comparison window appears
3. Click the Open Project to Compare icon
4. Use the file directory window to locate and select a previously saved SoftGenetics project file (.sgf, .sfp)

NOTE: Projects with similar datasets and analysis types should be chosen.
5. Click Open and the second project will be uploaded to the Project Comparison tool
6. The first project originally loaded into GeneMarkerHID will be marked as the Reference ($R=>$) and the second project uploaded to the Project Comparison tool is marked as the Sample ($S=>$)
7. Click the Project Comparison Settings icon to choose parameters to compare between the projects
8. Differences will be indicated in the report table on the right. When a difference is selected, each project's electropherogram and peak table will be displayed on the left.

Procedure for comparison of projects where the same samples have different names

1. Follow steps 1-4 above
2. Click Open and both projects will be listed at the right of the screen
3. Click on the 'Edit File Groups' icon to group files of same sample together
4. Click Match and Ok
5. Same as 6-8 above

Project Comparison Tool

Icons and Functions

Open Project to Compare

Opens a directory window for the user to identify a similar project to compare to the project already running in GeneMarkerHID. The first project in GeneMarkerHID will be considered the Reference project and the project uploaded to the Project Comparison tool will be considered the Sample project.

Project Comparison Settings

唇
Launches the Project Comparison Settings box with several options for running the comparison.

Peak Matched By: Allows the user to choose the principal parameters for comparison.

Peak Compare Items: Options for which parameters should be compared and marked as different.

Peak Comparison Threshold: Allows the user to qualify the ranges for detecting differences in peak attributes.

Convert TXT to Binary

Tools \rightarrow Convert Text to Binary Files
The Convert Text to Binary tool allows the user to upload trace data information in Text (.txt) file format for conversion into a four-color SCF file or a five-color SG1 file. The SCF and SG1 files can then be read by GeneMarkerHID and translated into chromatograms. This tool is useful for institutions developing their own fragment analysis instruments.

Procedure

1. Click the Load Text File button and select Text (.txt) files to convert
2. Once files are uploaded, they will appear in the Text File field
3. The software will automatically calculate a Recommended Ratio for the user to condense the number of frames in a single trace
4. Enter a condense frames by XX number in the Condense Frames field
5. Click Export to SG1 if exporting a five-color trace, click Export to SCF if exporting a four-color trace.

Export Electropherogram
 Tools \rightarrow Export Electropherogram

The Export Electropherogram tool allows the user to export the trace images to a specified folder.

Procedure

1. Use a dropdown menu to specify the output folder.
2. Specify the prefix and suffix for the exported file name. The full file name will be Prefix + Sample name ${ }^{+\prime \prime}$ " + Dye name+Suffix+Extension name.
3. Select samples, Dyes and Image Size
4. Use a dropdown menu to specify the export format. JPEG and PNG are both available. PNG is recommended.

Replicate Comparison Tool
 Tools \rightarrow Replicate Comparison Tool

Many labs choose to run and process multiple replicates of their samples. This ensures that a genotype is still available in cases of contamination, allele drop out, or reaction failure. Concordance between replicates can then be used to deduce the genotype of the sample.

The Replicate Comparison Tool is designed for projects in which multiple replicates of each sample have been uploaded. This tool compares replicates from the same sample to each other, with the goal of determining a "Consensus Genotype". The results of this comparison are displayed in the tool's Report Table. If a comparison resulted in a conflict (e.g. one replicate had the genotype 11,12 and its counterpart had 11, 13) the marker is flagged. The user has the ability to address these flags by entering the deduced genotype through a dropdown menu. Replicates must be grouped prior to utilizing the tool. This can be done in the in the tool itself (Edit file groups icon) or via the "apply sample groupings" option in the project menu of the main analysis window.

Procedure

11. Import raw data files.
12. Process data using the Run Wizard
13. Use the Main Analysis Window and Report Table to review flagged size and allele calls, and to make any necessary edits.
14. Group replicates using the File Name Group Editor (project \rightarrow apply sample grouping).
15. Select Tools \rightarrow Replicate Comparison Tool
16. Choose comparison settings or use defaults.
17. View results in the Report Table.
18. If desired export results.

Icons and Functions

Replicate ComparisonSettings

Opens the replicate comparison settings window, where the user may determine which qualities of each replicate are compared to one another.

Peak Compare Items - select which quantities to include in the comparison. Marker Name and Allele Name are initially selected.

Peak Match By - For convenience, some peak comparison items are grouped into three categories. Select one of the three categories to automatically select the relevant comparison parameters.

Peak Comparison Threshold - As described below, any conflicts arising from the comparison of two or more replicates are flagged. Here, the user may restrict flagging to only cases in which the difference surpasses a preset threshold.

As an example, suppose the height of a peak was 1000 RFU , and the height of the corresponding peak in a replicate was 1050 RFU. If the Max Height Difference was set to 10%, this conflict would not be flagged, as it is a difference of only 5%.

NOTE: Peak comparison thresholds will be grayed-out unless the corresponding comparison item is selected in the Peak Comparison Items section.

Edit File Groups

Opens the File Name Group Editor, allowing the user to group or re-group samples within the Replicate Comparison Tool.

Viewing Options

Use these icons to scroll through dye colors, zoom in, zoom out, and set the axis ranges, respectively. These icons are synonymous with their counterparts in the Main Analysis Screen.

Browse by All Color

Opens the All Color Browser, which allows the user to see the alignment of each separate dye trace for a given sample. Use the sample dropdown menu in the upper right corner to change samples.

Show Chart/Table

Displays a chart below each electropherogram which includes information such as peak size, heights, and user comments. Right click on the table to modify its contents.

Save Report

Use this icon to save the Report Table as a tab-delimited text file. Click the inverted triangle to switch between export formats. All exports contain a header with project and analysis information.

Whole Report - With this option selected, the Report Table will be exported in its entirety.
Final Report - Exports a header, the status column, and the final genotype column only.
Final Report With Only Valid Alleles - Identical to the Final Report option, with the exception that markers with none selected as the final genotype (see below) will be excluded from the export.

Regardless of which option is selected, the user will receive a warning if they attempt to export the report table if Discordant (D) calls are present. Use the pop-up dialog box to bypass this message.

Sort Report

Use this icon to sort replicate groups in the Report Table. There are two sorting options.
Sort by Group Sequence - With this option selected, replicate groups will be sorted according to their order in the Main Analysis Window file tree.

Sort by Status - With this option selected, replicate pairs with Discordant calls (D) or Null calls (N) will be sorted to the top of the table. Accordingly, Concordant (C) replicate pairs will be sorted to the bottom of the Report Table.

Select the preferred sorting option from the dropdown, and then click the refresh icon (white paper with arrows) to have the sorting take effect.

The Report Table

In the replicate comparison tool, synonymous replicates are compared according to the parameters set in the Replicate Comparison Settings window. The results of this comparison are organized and displayed in the Report Table.

The replicate Group Number is in the first column of the table, and the name of the first sample of each group is listed in the second column of the table, under the Sample Name header. Allele calls for each replicate are enumerated in the next columns and rows.

The Status Column - The status column is the focal point of the Report Table, as it displays the concordance of related replicates. The status column is automatically filled with a C, for Concordant, if the replicates are identical, or if differences are less than predetermined thresholds. If the replicates are different, or differences are greater than predetermined thresholds, the status column is filled with a \mathbf{D}, for Discordant. Finally, if only one replicate produced any allele calls at a given marker, the status column is filled with an \mathbf{N}, for Null.

Final Genotypes Column - The final genotypes column displays the consensus genotype for each marker of each replicate group.

Concordant Case - If the status column is filled with a C, the final genotype column is automatically filled with the genotype of both replicates.

Null Case - If the status column is filled with an N , the final genotype column is automatically filled with the genotype of the replicate which has allele calls.

Discordant Case - If the status column is filled with a D, the Final Genotypes column is left blank.

In this case, it is up to the user to manually determine the final genotype. This can be done using a dropdown menu in the corresponding cell of the Final Genotypes column.

From the dropdown menu, select the genotype for the entire locus. The dropdown menu can be accessed from any of the final genotype cells in the same row as the discordant marker. After selecting a genotype, the status will change to E, for Edit, to reflect that the locus has been manually changed.

Report [- - -										
No	Sample Name						Status	Final Geno		,
1	1120708-10_A08_032		Rep1		Rep2					
		Marker	Allele1	Allele2	Allele1	Allele2		Allele1	Allele2	
		D3S1358	17		17		C	17		
		TH01			9	9.3	N	9	9.3	
		D21511	30		30		C	30		
		D18551	18		12	18	D			
		Penta E	5	20	5	20	C	5	20	
		D5S818	9	11	9	11	C	9	11	
		D135317	12	13	12	13	C	12	13	
		D75820	9	10	9	10	C	9	10	
		D165539	11	13	11	13	C	11	13	
		CSF1P0	11		11		C	11		
		Penta D	12		12		C	12		
		AMEL	x		\times		C	\times		
		WW/A	15	18	15	18	C	15	18	
		D8S1179	14	16	14	16	C	14	16	
		TPOX	8	11	8	11	C	8	11	
		FGA	21	25	21	25	C	21	25	
		D19S433	13	14	13	14	C	13	14	
		D2S1338	17		17		C	17		
2	1120708-20_B08_031		Rep1		Rep2					
		Marker	Allele1	Allele2	Allele1	Allele2		Allele1	Allele2	
		D3S1358	17		17		C	17		
		TH01	9	9.3	9	9.3	C	9	9.3	

The user also has the option of selecting "none" instead of a consensus genotype. Markers for which none is selected are not exported in the "Final Report with Valid Alleles Only" export option.

Selecting the consensus genotype:

Sample Name						Status	Final Geno		-
1120708-10_A08_032		Rep1		Rep2					
	Marker	Allele1	Allele2	Allele1	Allele2		Allele1	Allele2	
	D3S1358	17		17		C	17		
	TH01			9	9.3	N	9	9.3	
	D21511	30		30		C	30		
	D18551	18		12	18	D	\checkmark		
	Penta E	5	20	5	20	C	18	18	
	D55818	9	11	9	11	C	$\begin{array}{\|l} \hline 12,18 \\ \text { None } \\ \hline \end{array}$	11	
	D13S317	12	13	12	13	C	12	13	

The Electropherogram

An electropherogram is displayed for each sample in a replicate group. The electropherograms are positioned directly to the left of the report table. It displays the alignment of samples within replicate groups. The electropherogram field behaves exactly like its counterpart in the main analysis window: draw a box from left-toright to zoom in, and draw a box from right-to-left to zoom out. However, allele calls cannot be edited while in the Replicate Comparison Tool.

Clicking on an allele call in the report table will take you directly to the marker containing that call in the electropherogram trace. Double-clicking on the C, D, or N in the status column will also display the corresponding locus in the Electropherogram.

Other Features and Considerations

Disable Entire Replicates

The replicate comparison tool allows the user to remove entire replicate groups from the comparison. To do this, simply right-click on the Sample Name column of a replicate group and select Disable. Allele and status calls of disabled replicates will be colored dark grey. Simply right click on the Sample Name column and click Enable to undo these effects.

Disabled replicates are never exported，regardless of which reporting option is selected．

Disabling Allelic Ladders

Because the report table expands to include every allele call for a given replicate group，it is recommended that Allelic ladders be disabled prior to entering the tool．Otherwise the report table will expand to include every ladder peak，making analysis of relevant peaks more difficult．

To disable ladder samples，in the Main Analysis Window simply right click on a ladder sample and select Disable．

NOTE：You may be prompted to re－process your samples．If the disabled ladder was used in your analysis procedure，select No．

File grouping must be done after allelic ladder samples have been disabled．Otherwise，the ladders will be included in the replicate comparison window．

On GeneMarker HID－Untitled		
File View Project Applications Tools Help		
［畐	旨気 画。	Q $\sqrt[4]{x}$
（1）Untitled （1）Raw Data －Allele Call		
	Thanile	
1？冨 LD：57－Allelit	Select Page	
2？畳 50－020410．140	Select Next Group	
3？盾 51－Item＿1＿a＿D		
3？\quad 52－ltem＿1＿b＿D	Select Max	
3？買 54－ltem＿1＿abc	De－select All	
3 －53－tem＿1＿c＿E		
4？畳 55－Item＿5＿a＿G	Search File	Ctrl +F
4？盾 56－Item＿5＿b＿H		
4？買 60－ltem＿5＿abc．	Sample Info	F2
4 －59－ltem＿5＿c＿C	Set Sample Type	
5 ？冨 58－020410．140		F3
6？俨 61－ltem＿6＿a＿E	Sort Samples	F3
6？俨 62－tem＿6＿b＿F	Disable	Ctrl + Del
$\begin{array}{l\|l} 6 ? \\ 6 ? & \text { R } \quad \text { 首 63-ltem_6_c_G } \\ \text { 64tem_6_abc } \end{array}$	Edit Comments	F4

Quality Sensor Evaluation (QS)

Rules for automated evaluation for quality sensor peaks are applied in the analysis template (run wizard third screen per example in chapter 2 and in the View - Preferences - Sample Quality Tab, per the example in chapter 3.

Overview of the main analysis screen in GeneMarkerHID software: Positive and negative control concordance (note the negative control has no error in the summary bar at the bottom of the screen when Q and S fragments are detected), qS flagging of appropriate samples in the file name tree at left, the electropherogram and the report table that is exported to the laboratory LIMS system.

Electropherograms of samples that have the QS rule(s) fired are flagged with qS in the upper left corner. A mouse-over will display a pop-up message with the rule fired (see image below).

To display peak evaluation details, mouse click on the qS - per this sample electropherogram D02 example with degradation detection:

Quality Sensor (qS) Detail
S/Q Intensity Ratio $=1.32$
Degradation Coefficients (Exp):
Remaining Rate of Signal at $+100 \mathrm{bp}=0.5106$
Standard Error of Regression $=0.9004$
OK

Chapter 11 User Management

Chapter 11 User Management
Procedure
User Manager
History
Settings
Edit History/Audit Trail

Overview

User management may be implemented after installation of GeneMarkerHID. The administrator activates User Management from the Help drop-down menu. User management provides control of user access rights and automatically generates an audit trail of all edits.

Procedure

1. Select Help \rightarrow User Management
2. The Login box appears
3. Click Run User Protection to activate the setup Administrator
4. Enter Organization Name, an Administrator username and password

5. Click OK
6. You are now logged in as the Administrator
7. Click the Add User button to add additional users
8. Click the Access Rights button to set up user type access permissions
9. Be sure to select Run User Protection and click OK to exit
10. Login is required to open GeneMarkerHID after the User Manager is activated.

User Manager

The User Manager tab displays user information and contains options for creating and deleting users.

User Window

Displays all users by name, type and creation date

Organization

Enter your organization name
Run User Protection
When selected, users will be prompted to log on with a user name and password. When deselected, any person can launch GeneMarkerHID without a username and password.

Add User
Launches the Add User box where a new username and password can be input. This is also where the user type can be chosen. A
 user can be deleted by right-clicking the username and selecting Delete User.
NOTE: Only the Administrator can add and delete users.

My Password

Launches the Change Password box where the user that is logged in can enter a new password. The new password must be entered twice to ensure accuracy.

Access Rights

Launches the Access Rights of User Types box where the different access rights available to each user type can be identified. Clicking the Set Default button will return the Access Rights for the User Type selected back to factory defaults.
NOTE: Only the Administrator can change Access Rights for a User Type.

Change User

Prompts for a confirmation of action then launches the Login box.

History

The User Manager History tab monitors user activity associated with the user manager function.

Date/Time

Records the computer's date and time for the activity.
User
Identifies the username of the person that performed the activity.

Events

Records the user manager activity that was performed.

Comments

Gives additional information for the event that was performed. For example, if a user is added, then the username of the person that was added is recorded under Comments.

Print
Use the Print button to preview the User Management History, print the history or save as a .png, pdf or .jpeg file.

SoftGenetics		User Management History		7/20/2011 1:28:16 PM Page 1
GeneMarker HID V2.1.2				
DataTime	User	Events	Comments	
7/20/2011 1:28:13 PM	Admin	Add new user	tech_1_jones	
7/20/2011 11:41:21 AM	Admin	Log in		
7/19/2011 9:04:40 AM	Admin	$\underline{L o g}$ in		
7/19/2011 8:45:09 AM	Admin	Log out		
7/18/2011 10:07:45 AM	Admin	Log in		
7/15/2011 3:01:14 PM	Admin	Log out		
7/15/2011 2:00:27 PM	Admin	Log in		
7/15/2011 1:49:43 PM	Admin	Log out		
7/15/2011 11:21:57 AM	Admin	Log in		
7/15/2011 10:47:02 AM	Admin	Log out		
7/15/2011 10:15:07 AM	Admin	Log in		
7/15/2011 10:15:07 AM	System	Add administrator		

Settings

The User Manager Settings tab contains additional options for the User Management function.

Overtime Protection

When selected, GeneMarkerHID will logout the user after the specified time entered in the Wait field. When the user is logged out, the status of the analysis remains unchanged until the user logs back in (with username and password).

Record Data Edit History

When selected, any changes made to the allele calls of the project will be saved in the Edit History log. Please see Edit History section below
 for more information.

Edit History/Audit Trail

By Sample

When Record Data Edit History is selected in the User Manager Settings box (see User Management Settings section above), any change to allele calls in the analysis will be recorded. Changes can also be recovered in the Edit History feature.
Procedure

1. Click the Show Chart/Table icon in the Main Analysis window.
2. The Peak Table will appear below the sample electropherogram.
3. Make changes to allele calls by right-clicking any cell in that allele's row in the Peak Table or right-click the grey vertical bar at the center of the peak in the electropherogram.
4. Choose to Edit Allele, Edit Comments, Add/Delete Allele, and Confirm. See Chapter 3 Main Analysis Overview.
5. Once a change has been made to the allele call, notice the pink shading in the No. column of the Peak Table. This indicates a change has been made to that allele.
6. Right-click any changed allele and select View History.
7. The Show Edit History window appears.
8. Select a change from the Edit History List to view changes in the
 Current/Old Values table. Changes will be highlighted in red.
9. To recover a change, right-click the row in the Edit History List and select Recover Old Value. A star will appear in the Recover column.
10. Click OK and click Yes when the warning prompts you to confirm.

Edits History Window

Use the Print Preview button in the lower right to Print the Edit History Window or save it as a .png or .jpeg file

The Print / Saved Edit History Report contains the project header with institution, User, run date time for the project and parameters. The table provides a record of each edit, time, organization, user, and operation.

By Project

Select View - View Project History to save/print the audit trail of all edits for a project.

Index
2
2D Offset 44
2nd Derivative Trace 14
A
ABI Identifiler 64
Abide by Panel 82
Access Rights 146
Account and Password 7,9
Add Family Members 117
Add Folder 12
Add Individual 116
Add Samples 28
Add Samples to Project 39
Add User. 146
Adjusting Panels 66
Administrator. 146
Affected Status 117
AGAROSE GEL 46
ALLELE BOUNDARIES 68
Allele Call 20
Allele Call folder 26
Allele Comments 33
Allele Count Report Style 78
Allele Evaluation 21
Allele Label 35
Allele List 74
Allelic Ladder. 21
Apply Filter to All Markers 62
Apply Sample Grouping 38
Audit Trail 148
Auto Fit Y 54
Auto Identify 37
Auto Panel Adjustment 22
Auto Pull-up Removal 14
Auto Range 18, 20
Auto Run 39
Auto Scale Markers 44, 82
Auto Select Best Ladder 22
Automated Pedigree Drawings 103
Automatic Panel Creation 65
Automatically Re-Sort Report. 38
Automatically Scroll Charts to Alleles When Selected in Report 38
B
Baseline Subtraction $14,15,18,19$
BC = Bin Conflict 31
BestMatch 48
BestMatch Match All 50
BestMatch Match Selected. 50
Bin Boundary 63
Bin Options 63
Bin range 60
Bin Table 75
Binning 60, 62
Bins. 71
Browse by All Colors 42, 107, 112
Browse By All Colors 43
C
Calibration Plots 54
Call Allele 42
Call Allele icon 23
Change Password 146
Change User 146
Chart Overlay. 81
Chart Settings 36
Chart Synchronize 54
Check Range in Edit 68
Classic. 35
Client computer 8
Close All 34
CMF 1.0 39, 85
CMF 3.0 39, 85
CODIS REPORT 39, 85
Color Matrix 15
Combined Probability (CPI). 98
Combined Probability of Exclusion (CPE) 98
confidence level 21
Confirm Peaks 34
Confirm/Unconfirm Allele 32
CONTACT US 10
Contamination Check. 129
Control Concordance 127, 128
Control Gene 63
Control Identification 134, 135
Control Identifier 135
Control Match Mode 135
convert Macintosh file formats 6
Convert Text to Binary 137
Convert Text to Binary Files 41
Create Bin 63
Create Marker 59
Create New Panel 65, 67, 68
Create New Size Standard 50
Cubic Spline Method 20
Current/Old Values 148
Custom Panel Creation 65
Custom Size Standard Creation 49
Customize Bin Column 43

D
Data File List 12
Data Processing 21, 22
Database Search 93, 103, 108
Decimal Precision 35
Deducing Missing Parent Genotype 116
Delete Bin 63
Delete Individual 116
Delete Marker 63, 67
Delete Panel 59, 67
Delete Peaks 34
Delete Size. 47
Delete Size Standard 47,49
Delete/Undelete Allele 32
Difference 31
Disable Samples 28
DISABLED SAMPLES 38
Disabled Size Columns 52
Display Settings 35
Distance/kb 64

E

Edit Allele 32
Edit Bin 63
Еdit Bins 62
Edit History 148
Edit History List 148
Edit Individual 116
Edit Marker Bins 62
Edit Panel 59
Edit Size 47
Editing Peaks 32, 33
Editing Size Call 53
Electropherogram 28
Electropherogram Trace Display 29
Enable SAMPLE Grouping 38
Enhanced Baseline Subtraction 19
Enhanced Smooth 18
Event Log 43
Exit 34
Export ABI Size Standard 50
Export Calibration Data 53
Export CODIS 39, 85
EXPORT ELECTROPHEROGRAM 41
Export Electropherogram 138
Export Panel 59, 67
Export Size Standard 47,50
Export the Project Panel 68
Export to SCF 137
Export to SG1 137
Extend Diploid Homozygous 74
F
Family 106, 112
Family Name. 116
Father 117
FILE LABELING CONVENTIONS 36
File Name Group 134
file Name Group Tool 40, 134, 138
FILE TYPES 12
Filename Group Editor 134
Filtering Parameters 60
FIX SIZE 53
Fixed Bin Width 62
Forensic Preferences Tab 36
Forensics Report Style 74
FRAGMENT MOBILITY 46
FRAME 18

G

Gel Image 68
Gel Image Display 29
Gel Image Display Settings 36
Gender 117
GeneMarker HID Local version 6, 8
GeneMarker Hid Network version. 8
General Settings 35
Group Identification. 134, 135
Grouped by Dye 82
H
Heterozygous Imbalance (HIM) 98
HI = High Intensity 32
Hide Extra Sample Names 74
Hide Toggles 42
Horizontal Movement 28
Horizontal Report Table 75
I
IHE = Inconclusive Heterozygous 32
IHO=Inconclusive Homozygous 32
ILS Statistics 52
IMB = Heterozygote Imbalance 32
Implement Y Axis Settings 82
Importa Panel 17
Import AbI Panels 65, 67
Import ABI Size Standard 50
Import Data Files 12
Import Panels 67
Import Panels from GeneMapper 65
Import Pre-Defined Panels 67
Import Size Standard 49
Individual ID 117
Insert Allele 32
Insert Size 47
Installation 6
Installation Wizard 6, 8
Intensity 20
Internal Lane Standard (ILS) 46
K
KINSHIP ANALYSIS103, 104
KINSHIP ANALYSIS EQUATIONS 104
Label Dyes \& Peak Numbers. 81
Ladder Identifier 22, 37
Ladder Label 37
Lane Score 52
LINE LIST 44
Linked User Manual 41
Linux 6
LO = Low Intensity 31
Local Southern 20
Login. 146
Low template flagging 61
LS = Low Score 31
M
Macintosh 6
Magic Wizard 41, 43
Major Adjustment of Panel 69
Major Mx. 98
Manual Calibration 55
Manual Panel Creation. 65
Manual Pull-up Correction 14
Manual selection of Range. 20
Mark Off-Allele as ‘Ol’ 35
Marker Boundary 60
Marker Drop-down Menu 42
Marker Options 59
Marker Parameters 60
Markers 71
Match by Fixed Position 135
Match by Sections 135
Match Ladder 68
Match Score 48, 50, 51, 52, 53, 54
Matched Groups 135
Max \# of Open Charts 36
Max \& Average 68
Max Allele Label Layers. 36
Max Chart \# in Page 36
Maximum Imbalance 61
Menu Options 34
Merge Bins 77
minimum computer requirement 6
Minimum Heterozygote Intensity 60
Minimum Homozygote Intensity 60
Minimum Imbalance 61
Minor Adjustment of Panel 69
Mix Dyes 81
Mixture Analysis 40, 87, 90
Mixture analysis database search 92
Mixture Analysis Equations 98
Mixture analysis likelihood ratios. 99
Mixture analysis overview 88
Mixture analysis procedure 88
Mixture analysis results 91
Modify Size Standard 48
Mother 117

N

Navigation 28
Negative Control 37
Negative Control Concordance 129
New Page for Each Sample 82
New Pedigree File 106, 111
New Size Standard Creation 49
new template 17
Nucleotide Repeat 60, 62
Nucleotide Repeats 61
0
Off Ladder peaks 55
Off Ladder Peaks 71
Offline Registration 7,9
OL = Off Ladder 31
Online Registration 7,9
Open Data 34, 42
Open Data Files 12
Open Pedigree File 106, 111
Open Project. 34, 86
Output Trace Data 41, 136
Overlay Trace 59
Overtime Protection 147
P
Panel 17
Panel Creation 64
Panel Editor ..17, 20, 22, 31, 32, 40, 57, 58, 59, 64, 65, 67, 68, 69, 74, 78, 86, 109
Panel list 58
Panel Table 63
Panels and Bins Files 64
Password 146
Paternity Index (PI) 118
Peak Compare Items 137
Peak Comparison Threshold 137
Peak Detection Threshold 20
Peak Information 34
Peak Label 36
Peak Matched By 137
Peak Saturation 19
Peak Score 21
Peak Table 30, 148
Peak Table Columns. 77
Peak Table Report Style. 77
Pedigree 39
Pedigree Analysis 121
Pedigree Drawing Automation 114
Pedigree file Name Match 40
Pedigree Parameters 106, 111
Percentage 20
PL = BEYOND PLOIDY 31
Positive Control 37
Positive Control Template Editor 40,128
Pre-Defined Panels 64
Pre-Defined Size Standards, 48
Preferences box 35
Preprocess Raw Data 54
Print 84
Print Alleles 82
Print Markers 82
Print Page Setup 85
Print Project Comments 81
Print Report ..27, 35, 39, 41, 42, 44, 73, 79, 80, 81, 82, 84, 85, 87
Print Report Content Options 81
Probability of Exclusion (PE) 98
Probability of Includsion (PI) 98
Profile Comparison View 39, 44
Project Comments 39
Project Comparison 40,136
Project Comparison Settings 136
Project Panel 58
Promega Powerplex 64
Pullup Correction 15
Q
Quality 31
Quality Reasons 31
Quality Sensor Evaluation 143
R
Raw Data Analysis 18
Raw Data folder 26
Raw Data Main Analysis window 13
Raw Data Traces 13
Re-analyze Individual Samples 23
Re-analyze with Run Wizard 22
Record Data Edit History 147
Recover Old Value 148
Refresh Pedigree 106, 111
Registration. 7
Registration ID 7,9
Relationship Testing 39
Reload Panel 59
Reload Size Standard 47
Reopen Project 86
Re-Open Project 34
Replicate Comparison 41
Replicate Comparison Tool 138
Report Settings 43
Report Settings icon 33
Report Settings Preferences Tab 38
Report Style, 74
Report Table 33, 74
Report Table Layout 75
Report Table Orientation 75
RESIDUAL 98
RMNE 98
Run. 39, 41
Run Method 35
Run Project 17, 42
Run User Protection 146
Run Wizard 17, 35
Run Wizard Additional Settings 21
Run Wizard Data Process 18
Run Wizard Template Selection 17

S

Sample File Tree 26
Sample Grouping 28
SAmple ILS 48, 53
SAMPLE Information. 27
SAMPLE SCORE 52
Sample Search Options 27
Sample Sorting Options 27
Saturated Peak Correction 16
Saturation Correction 14
Save as New Panel 67
Save as New Size Standard 49
Save Changes 50
Save Changes to Panel 68
Save Peak Table 32, 42
Save Pedigree Flle 106, 111
Save Project 34, 86
Save Report 43
Save Report Table. 34
Save Run Wizard Parameters 38
SCF FILE 137
Score 31
Second Derivative Trace 16
Server computer 8
Set Axis 42, 43, 107, 112
Set Sample Type 37
SG1 fILE 137
SGF FORMAT 86
Show 3D. 44
Show Chart/Table 42
Show Color 42, 96, 107, 112
Show Columns 30
Show Conflict 106, 111
Show Control Samples in Report 37
Show Disabled Samples in Report 38
Show Gel Image. 35
Show Individual Name 106, 111
Show Ladder Samples in Report 36
Show Last Event 41
Show Navigator 35
Show Only Uncertain Alleles 74
Show Rejected Low Score Alleles 74
Show Report. 35
Show Toggles 42
Show Type Symbol 75
Show/Hide icons 26
Size Calibration 42, 54
Size Calibration Charts 51
Size Call 20
Size Call Methods 20
Size Editor Action Help 50
Size Match 50
SIZE STANDARD 18
Size Standard 86
Size Standard List 46
Size Standard Statistics. 52
Size Template Editor $18,40,46,50$
Sмоотн $14,15,18$
SoftGenetics website 41
software version 41
SP = Saturated (Pull-up) 31
Spike Removal 14, 16
SR = Saturated (Repaired) 31
Standard Color. 18
Start up Settings 35
Start Your Project 41
Start/End 31
Stutter 61
Stutter Filter 61, 62
Synthetic Gel Image 28
SYSTEM REQUIREMENTS 6
T
Technical Support. 41
Template Name 17
Trace Mode 68
Trace Overlay 68
u
UNIX. 6
Update Calibration 53
USB KEY 6, 8
USB PORT 6, 7, 9, 10
Use Last template 17
Use Size String for Label 35
User ID. 7,9
User Management 41, 146
User Manager History 147
User Manager Settings. 147
v
Vertical Report Table 75
View History 33, 148
View Mode. 54
Virtual or variant alleles in panels 64
Virtual Panel 68
VPanel_PanelName. 68

Z

Zоом In ..42, 107, 112
Zоом In/Out .. 28
Zоом Out ..42, 107, 112

[^0]: Chapter 9 Cell Line Authentication - Percent Same Genotype Search

 Building a Database
 Searching the Database
 Exporting Results

