RNA-Seq Analysis with NextGENe Software

February 2011

John McGuigan, Yaping You, CS Jonathan Liu

Introduction

Due to reference sequence difficulties associated with alternative splicing and fusion genes, alignment of RNA-seq data is more challenging than alignment of DNA sequences. Short reads- especially those that fall within large exons- are able to align normally since they will generally match the reference with very few mismatches. Reads that span an exon-exon junction are more difficult because they must be split at the correct position and each part of the read must align correctly. Fusion genes provide even more of a challenge because the partial reads can align almost anywhere in the genome.

Different solutions to these challenges have been implemented in various software packages. Q-PALMA uses a machine learning algorithm and training datasets in order to identify splice junctions [1]. SuperSplat divides sequence reads at multiple positions and tries to find mapping sites where the sub-reads are separated by an intron in a certain size range[2]. TopHat is a software package that first finds potential exons based on coverage and then finds splice sites and links using canonical splice site sequence information [3]. NextGENe uses a novel algorithm to correctly align reads belonging to annotated and novel transcripts while providing the added benefit of a highly graphical interface that doesn't require use of scripting or the command line. Analysis can be performed on a desktop PC in just a few hours without any training datasets or pre-filtering of the reads.

The transcript variant view of the NextGENe Viewer

Methodology

NextGENe's approach takes advantage of previously-known isoform splice sites that still allows for detection of novel transcripts. The RNA-Seq application has a few main steps:

1. Align reads to the pre-indexed reference using NextGENe's Whole Genome Alignment method

- a. Save alignments when a read matches the reference perfectly
- b. Break the unmatched reads into seeds of a specified size
- c. Match the seeds and extend the alignment where matching positions are found
- d. Ignore seeds that map to more than a specified number of sites
- 2. Align remaining seeds using an exon junction reference
 - a. Use the alignment information to break the reads and align them to the whole-genome reference
- 3. Mark covered regions (potential exons) and record the IDs of reads aligned in those regions
- 4. Create links between regions when the same read is partially mapped in both regions
- 5. Compare discovered transcripts to annotated transcripts, marking any insertions, deletions, or fusions

6. Align the original reads to the discovered transcripts to ensure the best alignment and re-call the transcripts based on the aligned reads

7. Perform mutation detection for SNPs and short indels

Paired data is used to create more links and to identify distant regions that may have spliced together.

Two projects are output- a normal variant detection project and a transcript viewer project which shows detected transcripts and reports normal exons, insertions, deletions, novel transcripts, and fusions rather than SNPs and small indels which can be found in the regular project file.

Procedure

Paired-end Human RNA-Seq data sequenced on an Illumina Genome Analyzer was downloaded from the NCBI Sequence Read Archive (SRX011551) and used in this analysis.

1. The pre-indexed whole-genome reference provided by SoftGenetics (multiple species and builds are available) contains all annotated transcripts in order to be most effective. One of these genomes should be used with the query genome annotation tool (found under the tools menu) in order to save the annotation information (figure 1). This step only needs to be performed once, but can be repeated if the database changes. The database name must also be correct and can be set on the "DataBase" tab of the options window found under the "Process" menu (figure 2)

 Price 257 Juniner_60
 With Indexes
 Parly marked

 Select Only for Joint
 With Indexes
 Parly marked

 Demons (36, 100, 2000)
 Demons (36, 100, 2000)
 Hot Indexes

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Hot Indexes

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Hot Indexes

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 100, 2000)

 Demons (37, 100, 2000)
 Demons (37, 100, 2000)
 Demons (37, 2000)

 Demons (37, 100, 2000)
 Demons (37, 2000)
 Demons (37, 2000)
</t

2. The format conversion tool is used to filter and trim the data based on the quality score information. It outputs the data in .fasta format (.csfasta

for SOLiD data). The "minimum called base number" should be set to at least 50- this will remove reads that were trimmed too short to be effective in this analysis.

3. The transcriptome tool is run (figure 3).

- a. The converted data files are added.
- b. The reference is selected.
- c. The output directory is set.
- d. The options are adjusted.
 - i. Lowering the average (expected) coverage will decrease the coverage threshold for calling transcripts.
 - ii. The settings for seed alignment (seed size, step, and number of allowed ambiguous alignments) and settings for the alignment and mutation filters can be adjusted.

4. Two projects are generated- a SNP/Indel detection project and a transcript analysis project. Both can be opened in the NextGENe viewer for review.

Results

35,022,710 of 40,497,204 reads were converted successfully (86.48%). Processing took approximately 3 hours and 45 minutes. At the end of the analysis 20,822,825 reads were used (59.5%). The results of mutation and transcript variant detection are summarized in table 1.

Discussion

The transcript and mutation reports can be seen in figures 4 and 5. The transcript report is showing all of the results for the ILK gene on chromosome 11 while the mutation report is showing some of the results for the RGS1 gene. The transcript report gives information about detected exons- location, coverage/link number (average coverage in an exon or the number of links in a fusion), type of variant (insertion, deletion, new, or normal exon), function (UTR, CDS, or unknown), location type (alternative splice site, exon skipping, etc), and isoform/protein information. The mutation report is highly customizable with many different filter and display options.

Figure 3

Variant	Number Identified						
Fusions	2						
Unannotated exons	443						
Alternate Splice Sites	1,293						
Exon Skipping	1,074						
Intron Retention	43						
Normally expressed exons	22,263						
Total SNPs and Indels	19,397						
High Confidence SNPs	4,558						
Substitutions	15,517						
SNPs and Indels in dbSNP	2,713						
SNPs and Indels in CDS	4,052						
Table 1 - Variant Detection Results							

Figure 5

Figure 6 shows the transcript view for the ILK gene including an insertion (maroon) and an alternative splice site at the 3' end of the gene (pink). The link between the first and second exon is a virtual link because coverage was too low at the 5' end of the gene. RNA-Seq often shows a bias for higher coverage at the 3' end. Figure 7 shows one of two detected fusions.

¹⁵⁰

As seen in figure 8, expression levels are reported in NextGENe's expression report, which can be accessed from the SNP/Indel project. In this example expression levels were calculated on a per-gene basis and sorted by normalized expression levels (RPKM). The expression comparison report can be used to compare expression levels in multiple projects.

SOLiD data is always processed in colorspace as seen in figure 9. The ">" symbol indicates the 5' end of a read and the symbol is red when the read is split.

Several enhancements are planned for the near future including:

- Combined transcript and SNP/Indel View
- Improved fusion and multiple-isoform discovery based on detected mutations
- Integration of the tool into NextGENe's project wizard
- Addition of a single-strand sequencing analysis option

References

- 1. Fabio De Bona et al., "Optimal spliced alignments of short sequence reads," Bioinformatics 24, no. 16 (2008): i174 -i180.
- Douglas W. Bryant et al., "Supersplat—spliced RNA-seq alignment," Bioinformatics 26, no. 12 (June 15, 2010): 1500 -1505.
 Cole Trapnell, Lior Pachter, and Steven L. Salzberg, "TopHat:
- 3. Cole Trapnell, Lior Pachter, and Steven L. Salzberg, "TopHat: discovering splice junctions with RNA-Seq," Bioinformatics 25, no. 9 (May 1, 2009): 1105 -1111.

🚺 Express	ion Report											
File Setti	ngs											
Software	NextGENe V	r										
Project Nam	2.10_0128.p											
Date/Time	1/28/2011 3	1										
Total Reads	20822825											
Matched Re	20822825											
Instrument	Illumina											
Application	SNP/Indel D											
Index	Contig	Chr	Chr Position Start	Chr Position End	Gene	CDS	Start	End	Length	Average Cou	Read Counts	🕶 вркм
1	NT_004487	1	192544857	192549159	RGS1:+	1	170034857	170039159	4303	17013.00	1318921	11985.969
2	NT_010393	16	11348274	11350039	SOCS1; -	1	2285255812	2285257577	1766	12052.00	378238	8375.2967
3	NT_009714	12	9905082	9913497	CD69; ·	5	1887129915	1887138330	8416	4869.90	1302321	6051.1520
4	NT_009237	11	1889903	1913493	LSP1;+	2	1747795117	1747818707	23591	3387.70	2719837	4508.3982
5	NT_029289	5	149823792	149829319	RPS14; -	4	994895789	994901316	5528	3678.30	432074	3056.4398
6	NT_009237	11	1874200	1913493	LSP1;+	1	1747779414	1747818707	39294	2033.90	2719894	2706.7708
7	NT_007592	6	31236529	31239855	HLA-C; -	8	1057103786	1057107112	3327	3294.70	213907	2514.1891
8	NT_005403	2	204801471	204826300	ICOS; +	1	427009021	427033850	24830	4304.90	1519554	2393.1238
9	NT_008705	10	6052657	6104333	IL2RA; ·	8	1620243124	1620294800	51677	2973.00	2994875	2266.2465
10	NT_008705	10	6130949	6159422	RBM17; +	1	1620321416	1620349889	28474	2603.50	1444821	1984.2268
11	NT_011520	22	45705081	45737836	FAM118A; +	1	2686201234	2686233989	32756	2639.50	1549705	1850.0519
12	NT_016354	4	123372625	123377650	IL2; ·	4	780129088	780134113	5026	2416.30	234430	1823.9648
13	NT_008705	10	6244840	6277508	PFKFB3; +	2	1620435307	1620467975	32669	2178.50	1274543	1525.6130
14	NT_030059	10	98510023	98510680	RPL13AP5;		1709100490	1709101147	658	1263.90	20484	1217.3476
15	NT_007299	6	74225473	74230755	EEF1A1; ·	7	1096992730	1096998012	5283	1418.10	137588	1018.4171
16	NT_011109	19	49993957	49994163	RPL13A; +	5	2552627365	2552627571	207	1057.70	5284	998.2015
17	NT_011109	19	49994230	49994431	RPL13A; +	6	2552627638	2552627839	202	776.40	4750	919.5344
18	NT_009775	12	111843752	111889427	SH2B3; +	1	1986018585	1986064260	45676	1625.60	1033426	884.7429
19	NT_007592	6	30457183	30461982	HLA-E;+	1	1056324440	1056329239	4800	960.81	85628	697.5901
20	NT_011109	19	49994518	49994982	RPL134; +	7	2552627926	2552628390	465	673.18	7061	593.7984
21	NT 032977	1	113162075	113214241	CAPZA1:+	1	112652075	112704241	52167	878.56	774799	580,7897

Figure 8

